Medlin D L, Yang N, Spataru C D, Hale L M, Mishin Y
Sandia National Laboratories, Livermore, CA, 94551, USA.
Materials Measurement Laboratory, National Institute of Science and Technology, Gaithersburg, MD, 20899, USA.
Nat Commun. 2019 Apr 23;10(1):1820. doi: 10.1038/s41467-019-09815-5.
Tetradymite-structured chalcogenides such as bismuth telluride (BiTe) are of significant interest for thermoelectric energy conversion and as topological insulators. Dislocations play a critical role during synthesis and processing of such materials and can strongly affect their functional properties. The dislocations between quintuple layers present special interest since their core structure is controlled by the van der Waals interactions between the layers. In this work, using atomic-resolution electron microscopy, we resolve the basal dislocation core structure in BiTe, quantifying the disregistry of the atomic planes across the core. We show that, despite the existence of a stable stacking fault in the basal plane gamma surface, the dislocation core spreading is mainly due to the weak bonding between the layers, which leads to a small energy penalty for layer sliding parallel to the van der Waals gap. Calculations within a semidiscrete variational Peierls-Nabarro model informed by first-principles calculations support our experimental findings.
诸如碲化铋(BiTe)之类的四方硫铁矿结构的硫族化物对于热电能量转换以及作为拓扑绝缘体具有重大意义。位错在这类材料的合成和加工过程中起着关键作用,并且会强烈影响其功能特性。五元层之间的位错具有特殊的研究价值,因为其核心结构受层间范德华相互作用的控制。在这项工作中,我们使用原子分辨率电子显微镜解析了BiTe中的基面位错核心结构,量化了穿过核心的原子平面的错配度。我们表明,尽管在基面γ表面存在稳定的堆垛层错,但位错核心的扩展主要是由于层间的弱键合,这导致平行于范德华间隙的层滑动的能量损失较小。基于第一性原理计算的半离散变分派尔斯 - 纳巴罗模型内的计算支持了我们的实验结果。