Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center, Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States.
Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, United States.
Am J Physiol Heart Circ Physiol. 2024 Aug 1;327(2):H473-H503. doi: 10.1152/ajpheart.00766.2023. Epub 2024 Jun 21.
Computational, or in silico, models are an effective, noninvasive tool for investigating cardiovascular function. These models can be used in the analysis of experimental and clinical data to identify possible mechanisms of (ab)normal cardiovascular physiology. Recent advances in computing power and data management have led to innovative and complex modeling frameworks that simulate cardiovascular function across multiple scales. While commonly used in multiple disciplines, there is a lack of concise guidelines for the implementation of computer models in cardiovascular research. In line with recent calls for more reproducible research, it is imperative that scientists adhere to credible practices when developing and applying computational models to their research. The goal of this manuscript is to provide a consensus document that identifies best practices for in silico computational modeling in cardiovascular research. These guidelines provide the necessary methods for mechanistic model development, model analysis, and formal model calibration using fundamentals from statistics. We outline rigorous practices for computational, mechanistic modeling in cardiovascular research and discuss its synergistic value to experimental and clinical data.
计算或计算模型是研究心血管功能的有效、非侵入性工具。这些模型可用于分析实验和临床数据,以确定(异常)心血管生理学的可能机制。计算能力和数据管理方面的最新进展带来了创新和复杂的建模框架,可以跨多个尺度模拟心血管功能。尽管在多个学科中得到了广泛应用,但在心血管研究中实施计算机模型缺乏简明的指南。为了使研究更具可重复性,科学家在开发和应用计算模型时必须遵守可靠的实践。本文的目标是提供一份共识文件,确定心血管研究中计算模型的最佳实践。这些指南为机制模型开发、模型分析以及使用统计学基础知识进行正式模型校准提供了必要的方法。我们概述了心血管研究中计算、机制建模的严格实践,并讨论了其与实验和临床数据的协同价值。