Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan.
Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman.
Plant Physiol Biochem. 2022 May 1;178:55-69. doi: 10.1016/j.plaphy.2022.03.003. Epub 2022 Mar 6.
Photosynthesis is crucial for the survival of all living biota, playing a key role in plant productivity by generating the carbon skeleton that is the primary component of all biomolecules. Salinity stress is a major threat to agricultural productivity and sustainability as it can cause irreversible damage to photosynthetic apparatus at any developmental stage. However, the capacity of plants to become photosynthetically active under adverse saline conditions remains largely untapped. This study addresses this discrepancy by exploring the current knowledge on the impact of salinity on chloroplast operation, metabolism, chloroplast ultrastructure, and leaf anatomy, and highlights the dire consequences for photosynthetic machinery and stomatal conductance. We also discuss enhancing photosynthetic capacity by modifying and redistributing electron transport between photosystems and improving photosystem stability using genetic approaches, beneficial microbial inoculations, and root architecture changes to improve salt stress tolerance under field conditions. Understanding chloroplast operations and molecular engineering of photosynthetic genes under salinity stress will pave the way for developing salt-tolerant germplasm to ensure future sustainability by rehabilitating saline areas.
光合作用对于所有生物群的生存至关重要,通过生成碳骨架来为植物生产力发挥关键作用,碳骨架是所有生物分子的主要组成部分。盐胁迫是农业生产力和可持续性的主要威胁,因为它可以在任何发育阶段对光合器官造成不可逆转的损伤。然而,植物在不利的盐条件下保持光合作用的能力在很大程度上尚未得到开发。本研究通过探讨盐度对叶绿体运行、代谢、叶绿体超微结构和叶片解剖结构的影响的现有知识来解决这一差异,并强调了对光合机械和气孔导度的严重后果。我们还讨论了通过改变和重新分配光合作用系统之间的电子传递以及使用遗传方法、有益微生物接种和根系结构变化来提高光合系统稳定性来提高光合作用能力,以在田间条件下提高耐盐性。了解盐胁迫下叶绿体的运作和光合作用基因的分子工程将为开发耐盐种质奠定基础,通过修复盐渍地区来确保未来的可持续性。