MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
J Nanobiotechnology. 2021 May 25;19(1):153. doi: 10.1186/s12951-021-00892-7.
Salinity is a worldwide factor limiting the agricultural production. Cotton is an important cash crop; however, its yield and product quality are negatively affected by soil salinity. Use of nanomaterials such as cerium oxide nanoparticles (nanoceria) to improve plant tolerance to stress conditions, e.g. salinity, is an emerged approach in agricultural production. Nevertheless, to date, our knowledge about the role of nanoceria in cotton salt response and the behind mechanisms is still rare.
We found that PNC (poly acrylic acid coated nanoceria) helped to improve cotton tolerance to salinity, showing better phenotypic performance, higher chlorophyll content (up to 68% increase) and biomass (up to 38% increase), and better photosynthetic performance such as carbon assimilation rate (up to 144% increase) in PNC treated cotton plants than the NNP (non-nanoparticle control) group. Under salinity stress, in consistent to the results of the enhanced activities of antioxidant enzymes, PNC treated cotton plants showed significant lower MDA (malondialdehyde, up to 44% decrease) content and reactive oxygen species (ROS) level such as hydrogen peroxide (HO, up to 79% decrease) than the NNP control group, both in the first and second true leaves. Further experiments showed that under salinity stress, PNC treated cotton plants had significant higher cytosolic K (up to 84% increase) and lower cytosolic Na (up to 77% decrease) fluorescent intensity in both the first and second true leaves than the NNP control group. This is further confirmed by the leaf ion content analysis, showed that PNC treated cotton plants maintained significant higher leaf K (up to 84% increase) and lower leaf Na content (up to 63% decrease), and thus the higher K/Na ratio than the NNP control plants under salinity stress. Whereas no significant increase of mesophyll cell vacuolar Na intensity was observed in PNC treated plants than the NNP control under salinity stress, suggesting that the enhanced leaf K retention and leaf Na exclusion, but not leaf vacuolar Na sequestration are the main mechanisms behind PNC improved cotton salt tolerance. qPCR results showed that under salinity stress, the modulation of HKT1 but not SOS1 refers more to the PNC improved cotton leaf Na exclusion than the NNP control.
PNC enhanced leaf K retention and Na exclusion, but not vacuolar Na sequestration to enable better maintained cytosolic K/Na homeostasis and thus to improve cotton salt tolerance. Our results add more knowledge for better understanding the complexity of plant-nanoceria interaction in terms of nano-enabled plant stress tolerance.
盐度是限制农业生产的全球性因素。棉花是一种重要的经济作物;然而,土壤盐度会对其产量和产品质量产生负面影响。使用纳米材料,如氧化铈纳米颗粒(纳米氧化铈)来提高植物对胁迫条件(如盐度)的耐受性,是农业生产中的一种新兴方法。然而,迄今为止,我们对纳米氧化铈在棉花盐响应中的作用及其背后的机制知之甚少。
我们发现 PNC(聚丙烯酸包覆纳米氧化铈)有助于提高棉花对盐度的耐受性,表现出更好的表型性能、更高的叶绿素含量(高达 68%的增加)和生物量(高达 38%的增加),以及更好的光合作用性能,如碳同化率(高达 144%的增加),而 PNC 处理的棉花植物比 NNP(非纳米颗粒对照)组要好。在盐胁迫下,与抗氧化酶活性增强的结果一致,PNC 处理的棉花植物表现出显著较低的 MDA(丙二醛,高达 44%的降低)含量和活性氧(ROS)水平,如过氧化氢(HO,高达 79%的降低),而 NNP 对照组在第一和第二真叶中均如此。进一步的实验表明,在盐胁迫下,PNC 处理的棉花植物在第一和第二真叶中具有显著更高的胞质 K(高达 84%的增加)和更低的胞质 Na(高达 77%的降低)荧光强度,而 NNP 对照组则如此。这进一步通过叶片离子含量分析得到证实,表明 PNC 处理的棉花植物在盐胁迫下保持显著更高的叶片 K(高达 84%的增加)和更低的叶片 Na 含量(高达 63%的降低),因此在盐胁迫下比 NNP 对照植物具有更高的 K/Na 比。然而,在盐胁迫下,与 NNP 对照组相比,PNC 处理的植物中质体细胞液泡 Na 强度没有显著增加,这表明 PNC 提高棉花耐盐性的主要机制是增强叶片 K 的保留和叶片 Na 的排除,而不是叶片液泡 Na 的隔离。qPCR 结果表明,在盐胁迫下,调节 HKT1 而不是 SOS1 更多地指向 PNC 改善的棉花叶片 Na 排除,而不是 NNP 对照。
PNC 增强了叶片 K 的保留和 Na 的排除,而不是液泡 Na 的隔离,从而更好地维持了胞质 K/Na 平衡,从而提高了棉花的耐盐性。我们的研究结果为更好地理解植物-纳米氧化铈相互作用在纳米增强植物耐胁迫方面的复杂性提供了更多的知识。