Suppr超能文献

采用暗发酵浸出工艺从电子废物中回收金属的数学建模。

Mathematical modeling of metal recovery from E-waste using a dark-fermentation-leaching process.

机构信息

Department of Mathematics and Applications "R. Caccioppoli", University of Naples Federico II, Via Cintia 1, Monte S. Angelo, 80126, Naples, Italy.

出版信息

Sci Rep. 2022 Mar 11;12(1):4274. doi: 10.1038/s41598-022-08106-2.

Abstract

In this work, an original mathematical model for metals leaching from electronic waste in a dark fermentation process is proposed. The kinetic model consists of a system of non-linear ordinary differential equations, accounting for the main biological, chemical, and physical processes occurring in the fermentation of soluble biodegradable substrates and in the dissolution process of metals. Ad-hoc experimental activities were carried out for model calibration purposes, and all experimental data were derived from specific lab-scale tests. The calibration was achieved by varying kinetic and stoichiometric parameters to match the simulation results to experimental data. Cumulative hydrogen production, glucose, organic acids, and leached metal concentrations were obtained from analytical procedures and used for the calibration. The results confirmed the high accuracy of the model in describing biohydrogen production, organic acids accumulation, and metals leaching during the biological degradation process. Thus, the mathematical model represents a useful and reliable tool for the design of strategies for valuable metals recovery from waste or mineral materials. Moreover, further numerical simulations were carried out to analyze the interactions between the fermentation and the leaching processes and to maximize the efficiency of metals recovery due to the fermentation by-products.

摘要

在这项工作中,提出了一种用于从电子废物中浸出金属的暗发酵过程的原始数学模型。该动力学模型由一组非线性常微分方程组成,考虑了在可溶生物降解底物发酵过程中和金属溶解过程中发生的主要生物、化学和物理过程。为了进行模型校准,进行了专门的实验活动,所有实验数据均来自特定的实验室规模测试。通过改变动力学和化学计量参数来使模拟结果与实验数据匹配,从而实现了校准。通过分析程序获得了累积产氢量、葡萄糖、有机酸和浸出金属浓度,并将其用于校准。结果证实了该模型在描述生物氢产生、有机酸积累和金属在生物降解过程中浸出方面的高度准确性。因此,该数学模型代表了从废物或矿物材料中回收有价值金属的策略设计的有用且可靠的工具。此外,还进行了进一步的数值模拟,以分析发酵和浸出过程之间的相互作用,并由于发酵副产物最大化金属回收的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2478/8917181/e969ff250b49/41598_2022_8106_Fig1_HTML.jpg

相似文献

1
Mathematical modeling of metal recovery from E-waste using a dark-fermentation-leaching process.
Sci Rep. 2022 Mar 11;12(1):4274. doi: 10.1038/s41598-022-08106-2.
2
A Cleaner Process for Selective Recovery of Valuable Metals from Electronic Waste of Complex Mixtures of End-of-Life Electronic Products.
Environ Sci Technol. 2015 Jul 7;49(13):7981-8. doi: 10.1021/acs.est.5b01023. Epub 2015 Jun 19.
3
Development and calibration of a model for biohydrogen production from organic waste.
Waste Manag. 2013 May;33(5):1128-35. doi: 10.1016/j.wasman.2013.01.019. Epub 2013 Mar 7.
4
Upflow anaerobic sludge blanket reactor--a review.
Indian J Environ Health. 2001 Apr;43(2):1-82.
5
Copper recovery from waste printed circuit boards by the flotation-leaching process optimized using response surface methodology.
J Air Waste Manag Assoc. 2021 Dec;71(12):1483-1491. doi: 10.1080/10962247.2021.1874568. Epub 2021 Sep 24.
6
Process optimization and kinetics for leaching of rare earth metals from the spent Ni-metal hydride batteries.
Waste Manag. 2016 May;51:196-203. doi: 10.1016/j.wasman.2015.12.018. Epub 2015 Dec 30.
7
Studies on leaching characteristics of electronic waste for metal recovery using inorganic and organic acids and base.
Waste Manag Res. 2021 Feb;39(2):242-249. doi: 10.1177/0734242X20931929. Epub 2020 Jun 22.
9
Recovery of heavy metals from waste printed circuit boards: statistical optimization of leaching and residue characterization.
Environ Sci Pollut Res Int. 2019 Aug;26(24):24417-24429. doi: 10.1007/s11356-019-05596-y. Epub 2019 Jun 22.
10
Waste-to-energy nexus for circular economy and environmental protection: Recent trends in hydrogen energy.
Sci Total Environ. 2020 Apr 15;713:136633. doi: 10.1016/j.scitotenv.2020.136633. Epub 2020 Jan 14.

本文引用的文献

1
Sustainable asphalt mastics made up recycling waste as filler.
J Environ Manage. 2022 Jan 1;301:113826. doi: 10.1016/j.jenvman.2021.113826. Epub 2021 Oct 7.
2
Electric car battery: An overview on global demand, recycling and future approaches towards sustainability.
J Environ Manage. 2021 Oct 1;295:113091. doi: 10.1016/j.jenvman.2021.113091. Epub 2021 Jun 23.
3
A review on the recycling of spent lithium-ion batteries (LIBs) by the bioleaching approach.
Chemosphere. 2021 Nov;282:130944. doi: 10.1016/j.chemosphere.2021.130944. Epub 2021 May 21.
4
A general framework to model the fate of trace elements in anaerobic digestion environments.
Sci Rep. 2021 Apr 5;11(1):7476. doi: 10.1038/s41598-021-85403-2.
5
Applicability of alkaline precipitation for the recovery of EDDS spent solution.
J Environ Manage. 2017 Dec 1;203(Pt 1):358-363. doi: 10.1016/j.jenvman.2017.08.013. Epub 2017 Aug 12.
6
Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects.
Waste Manag. 2017 Jun;64:244-254. doi: 10.1016/j.wasman.2017.03.037. Epub 2017 Mar 30.
7
Photofermentative production of hydrogen and poly-β-hydroxybutyrate from dark fermentation products.
Bioresour Technol. 2017 Mar;228:171-175. doi: 10.1016/j.biortech.2016.12.079. Epub 2016 Dec 24.
8
Leaching modelling of slurry-phase carbonated steel slag.
J Hazard Mater. 2016 Jan 25;302:415-425. doi: 10.1016/j.jhazmat.2015.10.005. Epub 2015 Oct 9.
10
Antimony leaching from MSWI bottom ash: modelling of the effect of pH and carbonation.
Waste Manag. 2012 Feb;32(2):278-86. doi: 10.1016/j.wasman.2011.09.018. Epub 2011 Oct 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验