Suppr超能文献

红细胞变形性对毛细血管网络血液动力学改变影响的计算研究。

A computational study of red blood cell deformability effect on hemodynamic alteration in capillary vessel networks.

机构信息

Mechanical and Aerospace Engineering Department, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.

出版信息

Sci Rep. 2022 Mar 11;12(1):4304. doi: 10.1038/s41598-022-08357-z.

Abstract

Capillary blood vessels, the smallest vessels in the body, form an intricate network with constantly bifurcating, merging and winding vessels. Red blood cells (RBCs) must navigate through such complex microvascular networks in order to maintain tissue perfusion and oxygenation. Normal, healthy RBCs are extremely deformable and able to easily flow through narrow vessels. However, RBC deformability is reduced in many pathological conditions and during blood storage. The influence of reduced cell deformability on microvascular hemodynamics is not well established. Here we use a high-fidelity, 3D computational model of blood flow that retains exact geometric details of physiologically realistic microvascular networks, and deformation of every one of nearly a thousand RBCs flowing through the networks. We predict that reduced RBC deformability alters RBC trafficking with significant and heterogeneous changes in hematocrit. We quantify such changes along with RBC partitioning and lingering at vascular bifurcations, perfusion and vascular resistance, and wall shear stress. We elucidate the cellular-scale mechanisms that cause such changes. We show that such changes arise primarily due to the altered RBC dynamics at vascular bifurcations, as well as cross-stream migration. Less deformable cells tend to linger less at majority of bifurcations increasing the fraction of RBCs entering the higher flow branches. Changes in vascular resistance also seen to be heterogeneous and correlate with hematocrit changes. Furthermore, alteration in RBC dynamics is shown to cause localized changes in wall shear stress within vessels and near vascular bifurcations. Such heterogeneous and focal changes in hemodynamics may be the cause of morphological abnormalities in capillary vessel networks as observed in several diseases.

摘要

毛细血管是体内最小的血管,它们形成了一个错综复杂的网络,血管不断分叉、合并和弯曲。红细胞(RBC)必须通过这样复杂的微血管网络来维持组织灌注和氧合。正常、健康的 RBC 具有极高的变形能力,能够轻松地流过狭窄的血管。然而,在许多病理情况下和血液储存过程中,RBC 的变形能力会降低。细胞变形能力降低对微血管血液动力学的影响尚未得到充分证实。在这里,我们使用了一种高保真的、保留生理现实微血管网络的精确几何细节的 3D 计算血流模型,以及近 1000 个流经网络的 RBC 中的每一个的变形。我们预测,RBC 变形能力的降低会改变 RBC 的运输,导致血液中红细胞压积发生显著且不均匀的变化。我们沿着红细胞分配和在血管分叉处的滞留、灌注和血管阻力以及壁面切应力等方面对这些变化进行定量。我们阐明了导致这些变化的细胞尺度机制。我们表明,这些变化主要是由于血管分叉处 RBC 动力学的改变以及横向迁移引起的。变形能力较低的细胞往往在大多数分叉处停留时间更短,从而增加了进入高流量分支的 RBC 比例。血管阻力的变化也不均匀,与红细胞压积的变化相关。此外,RBC 动力学的改变被证明会导致血管内和血管分叉附近的壁面切应力发生局部变化。这样的血液动力学不均匀和局部变化可能是几种疾病中观察到的毛细血管网络形态异常的原因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7583/8917159/3bf3bd8daea5/41598_2022_8357_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验