Kundrata Ivan, Barr Maïssa K S, Tymek Sarah, Döhler Dirk, Hudec Boris, Brüner Philipp, Vanko Gabriel, Precner Marian, Yokosawa Tadahiro, Spiecker Erdmann, Plakhotnyuk Maksym, Fröhlich Karol, Bachmann Julien
ATLANT 3D Nanosystems, Kongens Lyngby, 2800, Denmark.
Friedrich-Alexander-Universität Erlangen-Nürnberg, Chemistry of Thin Film Materials, IZNF, 91058, Erlangen, Germany.
Small Methods. 2022 May;6(5):e2101546. doi: 10.1002/smtd.202101546. Epub 2022 Mar 11.
Additive manufacturing (3D printing) has not been applicable to micro- and nanoscale engineering due to the limited resolution. Atomic layer deposition (ALD) is a technique for coating large areas with atomic thickness resolution based on tailored surface chemical reactions. Thus, combining the principles of additive manufacturing with ALD could open up a completely new field of manufacturing. Indeed, it is shown that a spatially localized delivery of ALD precursors can generate materials patterns. In this "atomic-layer additive manufacturing" (ALAM), the vertical resolution of the solid structure deposited is about 0.1 nm, whereas the lateral resolution is defined by the microfluidic gas delivery. The ALAM principle is demonstrated by generating lines and patterns of pure, crystalline TiO and Pt on planar substrates and conformal coatings of 3D nanostructures. The functional quality of ALAM patterns is exemplified with temperature sensors, which achieve a performance similar to the industry standard. This general method of multimaterial direct patterning is much simpler than standard multistep lithographic microfabrication. It offers process flexibility, saves processing time, investment, materials, waste, and energy. It is envisioned that together with etching, doping, and cleaning performed in a similar local manner, ALAM will create the "atomic-layer advanced manufacturing" family of techniques.
由于分辨率有限,增材制造(3D打印)尚未应用于微米和纳米尺度工程。原子层沉积(ALD)是一种基于定制表面化学反应以原子厚度分辨率对大面积进行涂层的技术。因此,将增材制造原理与ALD相结合可以开辟一个全新的制造领域。事实上,研究表明,ALD前驱体的空间局部输送可以生成材料图案。在这种“原子层增材制造”(ALAM)中,沉积的固体结构的垂直分辨率约为0.1纳米,而横向分辨率由微流体气体输送定义。通过在平面基板上生成纯晶体TiO和Pt的线条和图案以及3D纳米结构的共形涂层,证明了ALAM原理。温度传感器体现了ALAM图案的功能质量,其性能达到了行业标准。这种多材料直接图案化的通用方法比标准的多步光刻微制造要简单得多。它具有工艺灵活性,节省加工时间、投资、材料、废物和能源。可以设想,与以类似局部方式进行的蚀刻、掺杂和清洗一起,ALAM将创造出“原子层先进制造”技术家族。