Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat de Barcelona (UB), Barcelona, Spain.
Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain.
EBioMedicine. 2022 Mar;77:103914. doi: 10.1016/j.ebiom.2022.103914. Epub 2022 Mar 9.
Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons.
We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation.
We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids.
We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies.
This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).
视觉障碍是现代社会需要解决的一个重要医学难题。在较低等的脊椎动物中,Müller 胶质细胞(MG)在视网膜中具有再生潜力,但在哺乳动物中没有。然而,在小鼠中,MG 与成体干细胞之间的体内细胞融合形成的杂交细胞可以部分再生被消融的神经元。
我们使用人视网膜器官培养物和分离细胞的制备物来检验以下假设,即 MG 与人成体干细胞之间的细胞融合可以在人系统中诱导神经元再生。此外,我们建立了一种微注射系统,用于移植人视网膜类器官,以证明杂交分化。
我们首先发现,在人视网膜器官培养物以及细胞培养物中,MG 与成体干细胞之间发生细胞融合。接下来,我们表明,当 Wnt/β-连环蛋白途径在融合前被激活时,融合后的杂交细胞可以分化并获得原神经电生理特征。最后,我们证明了这些杂交细胞可以植入人视网膜类器官并分化。
我们展示了人 MG 与成体干细胞之间的融合,并证明了融合后的杂交细胞可以在人模型系统中向神经命运分化。我们的结果表明,细胞融合介导的治疗可能是治疗人类视网膜病变的一种有前途的再生方法。
这项工作得到了 La Caixa Health(HR17-00231)、Velux Stiftung(976a)和 Ministerio de Ciencia e Innovación(BFU2017-86760-P)(AEI/FEDER,UE)、AGAUR(2017 SGR 689,2017 SGR 926)的支持。