Suppr超能文献

多源自适应磁共振成像融合技术在肝细胞癌大体肿瘤体积勾画中的应用评估

Evaluation of Multisource Adaptive MRI Fusion for Gross Tumor Volume Delineation of Hepatocellular Carcinoma.

作者信息

Cheung Andy Lai-Yin, Zhang Lei, Liu Chenyang, Li Tian, Cheung Anson Ho-Yin, Leung Chun, Leung Angus Kwong-Chuen, Lam Sai-Kit, Lee Victor Ho-Fun, Cai Jing

机构信息

Department of Clinical Oncology, Queen Mary Hospital, Hong Kong, Hong Kong SAR, China.

Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China.

出版信息

Front Oncol. 2022 Feb 25;12:816678. doi: 10.3389/fonc.2022.816678. eCollection 2022.

Abstract

PURPOSE

Tumor delineation plays a critical role in radiotherapy for hepatocellular carcinoma (HCC) patients. The incorporation of MRI might improve the ability to correctly identify tumor boundaries and delineation consistency. In this study, we evaluated a novel Multisource Adaptive MRI Fusion (MAMF) method in HCC patients for tumor delineation.

METHODS

Ten patients with HCC were included in this study retrospectively. Contrast-enhanced T1-weighted MRI at portal-venous phase (T1W), contrast-enhanced T1-weighted MRI at 19-min delayed phase (T1W), T2-weighted (T2W), and diffusion-weighted MRI (DWI) were acquired on a 3T MRI scanner and imported to in-house-developed MAMF software to generate synthetic MR fusion images. The original multi-contrast MR image sets were registered to planning CT by deformable image registration (DIR) using MIM. Four observers independently delineated gross tumor volumes (GTVs) on the planning CT, four original MR image sets, and the fused MRI for all patients. Tumor contrast-to-noise ratio (CNR) and Dice similarity coefficient (DSC) of the GTVs between each observer and a reference observer were measured on the six image sets. Inter-observer and inter-patient mean, SD, and coefficient of variation (CV) of the DSC were evaluated.

RESULTS

Fused MRI showed the highest tumor CNR compared to planning CT and original MR sets in the ten patients. The mean ± SD tumor CNR was 0.72 ± 0.73, 3.66 ± 2.96, 4.13 ± 3.98, 4.10 ± 3.17, 5.25 ± 2.44, and 9.82 ± 4.19 for CT, T1W, T2W, DWI, T1W, and fused MRI, respectively. Fused MRI has the minimum inter-observer and inter-patient variations as compared to original MR sets and planning CT sets. GTV delineation inter-observer mean DSC across the ten patients was 0.81 ± 0.09, 0.85 ± 0.08, 0.88 ± 0.04, 0.89 ± 0.08, 0.90 ± 0.04, and 0.95 ± 0.02 for planning CT, T1W, T2W, DWI, T1W, and fused MRI, respectively. The patient mean inter-observer CV of DSC was 3.3%, 3.2%, 1.7%, 2.6%, 1.5%, and 0.9% for planning CT, T1W, T2W, DWI, T1W, and fused MRI, respectively.

CONCLUSION

The results demonstrated that the fused MRI generated using the MAMF method can enhance tumor CNR and improve inter-observer consistency of GTV delineation in HCC as compared to planning CT and four commonly used MR image sets (T1W, T1W, T2W, and DWI). The MAMF method holds great promise in MRI applications in HCC radiotherapy treatment planning.

摘要

目的

肿瘤勾画在肝细胞癌(HCC)患者的放射治疗中起着关键作用。纳入MRI可能会提高正确识别肿瘤边界的能力和勾画的一致性。在本研究中,我们评估了一种用于HCC患者肿瘤勾画的新型多源自适应MRI融合(MAMF)方法。

方法

本研究回顾性纳入了10例HCC患者。在3T MRI扫描仪上采集门静脉期对比增强T1加权MRI(T1W)、19分钟延迟期对比增强T1加权MRI(T1W)、T2加权(T2W)和扩散加权MRI(DWI),并导入自行开发的MAMF软件以生成合成MR融合图像。使用MIM通过可变形图像配准(DIR)将原始多对比MR图像集与计划CT配准。4名观察者在计划CT、4组原始MR图像集以及所有患者的融合MRI上独立勾画大体肿瘤体积(GTV)。在这6组图像上测量每个观察者与参考观察者之间GTV的肿瘤对比噪声比(CNR)和骰子相似系数(DSC)。评估观察者间和患者间DSC的均值、标准差(SD)和变异系数(CV)。

结果

在这10例患者中,与计划CT和原始MR图像集相比,融合MRI显示出最高的肿瘤CNR。CT、T1W、T2W、DWI、T1W和融合MRI的平均±SD肿瘤CNR分别为0.72±0.73、3.66±2.96、4.13±3.98、4.10±3.17、5.25±2.44和9.82±4.19。与原始MR图像集和计划CT图像集相比,融合MRI的观察者间和患者间变异最小。10例患者中,计划CT、T1W、T2W、DWI、T1W和融合MRI的观察者间GTV勾画平均DSC分别为0.81±0.09、0.85±0.08、0.88±0.04、0.89±0.08、0.90±0.04和0.95±0.02。计划CT、T1W、T2W、DWI、T1W和融合MRI的患者观察者间DSC平均CV分别为3.3%、3.2%、1.7%、2.6%、1.5%和0.9%。

结论

结果表明,与计划CT和4组常用MR图像集(T1W、T1W、T2W和DWI)相比,使用MAMF方法生成的融合MRI可提高肿瘤CNR,并改善HCC中GTV勾画的观察者间一致性。MAMF方法在HCC放射治疗计划的MRI应用中具有很大前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0df8/8913492/3a8e8b220609/fonc-12-816678-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验