Suppr超能文献

用于图像融合的逐像素梯度模型(PGMIF):一种用于鼻咽癌肿瘤对比度增强的多序列磁共振成像(MRI)融合模型。

Pixelwise Gradient Model for Image Fusion (PGMIF): a multi-sequence magnetic resonance imaging (MRI) fusion model for tumor contrast enhancement of nasopharyngeal carcinoma.

作者信息

Cheng Ka-Hei, Li Wen, Lee Francis Kar-Ho, Li Tian, Cai Jing

机构信息

Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.

Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China.

出版信息

Quant Imaging Med Surg. 2024 Jun 1;14(6):4098-4109. doi: 10.21037/qims-23-1559. Epub 2024 May 8.

Abstract

BACKGROUND

Different image modalities capture different aspects of a patient. It is desirable to produce images that capture all such features in a single image. This research investigates the potential of multi-modal image fusion method to enhance magnetic resonance imaging (MRI) tumor contrast and its consistency across different patients, which can capture both the anatomical structures and tumor contrast clearly in one image, making MRI-based target delineation more accurate and efficient.

METHODS

T1-weighted (T1-w) and T2-weighted (T2-w) magnetic resonance (MR) images from 80 nasopharyngeal carcinoma (NPC) patients were used. A novel image fusion method, Pixelwise Gradient Model for Image Fusion (PGMIF), which is based on the pixelwise gradient to capture the shape and a generative adversarial network (GAN) term to capture the image contrast, was introduced. PGMIF is compared with several popular fusion methods. The performance of fusion methods was quantified using two metrics: the tumor contrast-to-noise ratio (CNR), which aims to measure the contrast of the edges, and a Generalized Sobel Operator Analysis, which aims to measure the sharpness of edge.

RESULTS

The PGMIF method yielded the highest CNR [median (mdn) =1.208, interquartile range (IQR) =1.175-1.381]. It was a statistically significant enhancement compared to both T1-w (mdn =1.044, IQR =0.957-1.042, P<5.60×10) and T2-w MR images (mdn =1.111, IQR =1.023-1.182, P<2.40×10), and outperformed other fusion models: Gradient Model with Maximum Comparison among Images (GMMCI) (mdn =0.967, IQR =0.795-0.982, P<5.60×10), Deep Learning Model with Weighted Loss (DLMWL) (mdn =0.883, IQR =0.832-0.943, P<5.60×10), Pixelwise Weighted Average (PWA) (mdn =0.875, IQR =0.806-0.972, P<5.60×10) and Maximum of Images (MoI) (mdn =0.863, IQR =0.823-0.991, P<5.60×10). In terms of the Generalized Sobel Operator Analysis, a measure based on Sobel operator to measure contrast enhancement, PGMIF again exhibited the highest Generalized Sobel Operator (mdn =0.594, IQR =0.579-0.607; mdn =0.692, IQR =0.651-0.718 for comparison with T1-w and T2-w images), compared to: GMMCI (mdn =0.491, IQR =0.458-0.507, P<5.60×10; mdn =0.495, IQR =0.487-0.533, P<5.60×10), DLMWL (mdn =0.292, IQR =0.248-0.317, P<5.60×10; mdn =0.191, IQR =0.179-0.243, P<5.60×10), PWA (mdn =0.423, IQR =0.383-0.455, P<5.60×10; mdn =0.448, IQR =0.414-0.463, P<5.60×10) and MoI (mdn =0.437, IQR =0.406-0.479, P<5.60×10; mdn =0.540, IQR =0.521-0.636, P<5.60×10), demonstrating superior contrast enhancement and sharpness compared to other methods.

CONCLUSIONS

Based on the tumor CNR and Generalized Sobel Operator Analysis, the proposed PGMIF method demonstrated its capability of enhancing MRI tumor contrast while keeping the anatomical structures of the input images. It holds promises for NPC tumor delineation in radiotherapy.

摘要

背景

不同的成像模态能捕捉患者的不同方面。理想的情况是生成能在单一图像中捕捉所有这些特征的图像。本研究探讨了多模态图像融合方法增强磁共振成像(MRI)肿瘤对比度及其在不同患者间一致性的潜力,该方法能在一幅图像中清晰地捕捉解剖结构和肿瘤对比度,使基于MRI的靶区勾画更准确、高效。

方法

使用了80例鼻咽癌(NPC)患者的T1加权(T1-w)和T2加权(T2-w)磁共振(MR)图像。引入了一种新颖的图像融合方法,即基于像素梯度捕捉形状的图像融合逐像素梯度模型(PGMIF)和用于捕捉图像对比度的生成对抗网络(GAN)项。将PGMIF与几种常用的融合方法进行比较。使用两个指标对融合方法的性能进行量化:旨在测量边缘对比度的肿瘤对比噪声比(CNR),以及旨在测量边缘清晰度的广义Sobel算子分析。

结果

PGMIF方法产生了最高的CNR[中位数(mdn)=1.208,四分位间距(IQR)=1.175 - 1.381]。与T1-w(mdn =1.044,IQR =0.957 - 1.042,P<5.60×10)和T2-w MR图像(mdn =1.111,IQR =1.023 - 1.182,P<2.40×10)相比,这是具有统计学意义的增强,并且优于其他融合模型:图像间最大比较梯度模型(GMMCI)(mdn =0.967,IQR =0.795 - 0.982,P<5.60×10)、加权损失深度学习模型(DLMWL)(mdn =0.883,IQR =0.832 - 0.943,P<5.60×10)、逐像素加权平均(PWA)(mdn =0.875,IQR =0.8用6 - 0.972,P<5.60×10)和图像最大值(MoI)(mdn =0.863,IQR =0.823 - 0.991,P<5.60×10)。在广义Sobel算子分析方面,这是一种基于Sobel算子测量对比度增强的方法,与T1-w和T2-w图像比较时,PGMIF再次表现出最高的广义Sobel算子值(mdn =0.594,IQR =0.579 - 0.607;mdn =0.692,IQR =0.651 - 0.718),相比之下:GMMCI(mdn =0.491,IQR =0.458 - 0.507,P<5.60×10;mdn =0.495,IQR =0.487 - 0.533,P<5.60×10)、DLMWL(mdn =0.292,IQR =0.248 - 0.317,P<5.60×10;mdn =0.191,IQR =用79 - 0.243,P<5.60×10)、PWA(mdn =0.423,IQR =0.383 - 0.455,P<5.60×10;mdn =0.448,IQR =0.414 - 0.463,P<5.60×10)和MoI(mdn =0.437,IQR =0.406 - 0.479,P<5.60×10;mdn =0.540,IQR =0.521 - 0.636,P<5.60×10),表明与其他方法相比具有卓越的对比度增强和清晰度。

结论

基于肿瘤CNR和广义Sobel算子分析,所提出的PGMIF方法展示了其在增强MRI肿瘤对比度同时保持输入图像解剖结构的能力。它在鼻咽癌放疗的靶区勾画方面具有前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/26c9/11151260/a3b72e1153ca/qims-14-06-4098-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验