Beijing Engineering Research Center for Biofuels, Institute of Nuclear and New, Energy Technology, Tsinghua University, Beijing, P. R. China.
Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.
Nat Plants. 2020 Mar;6(3):314-320. doi: 10.1038/s41477-020-0610-x. Epub 2020 Mar 9.
Photosystem I (PSI) is able to form different oligomeric states across various species. To reveal the structural basis for PSI dimerization and tetramerization, we structurally investigated PSI from the cyanobacterium Anabaena. This revealed a disrupted trimerization domain due to lack of the terminal residues of PsaL in the lumen, which resulted in PSI dimers with loose connections between monomers and weaker energy-coupled chlorophylls than in the trimer. At the dimer surface, specific phospholipids, cofactors and interactions in combination facilitated recruitment of another dimer to form a tetramer. Taken together, the relaxed luminal connections and lipid specificity at the dimer interface account for membrane curvature. PSI tetramer assembly appears to increase the surface area of the thylakoid membrane, which would contribute to PSI crowding.
光系统 I(PSI)能够在不同物种中形成不同的寡聚态。为了揭示 PSI 二聚体和四聚体形成的结构基础,我们对蓝藻鱼腥藻中的 PSI 进行了结构研究。结果表明,由于 PsaL 末端残基缺失,导致 PSI 三聚体结构域被破坏,形成的 PSI 二聚体中单体间连接松散,能量偶联叶绿素比三聚体少。在二聚体表面,特定的磷脂、辅助因子和相互作用结合在一起,促进了另一个二聚体的募集,从而形成四聚体。总的来说,松弛的内腔连接和二聚体界面处的脂质特异性解释了膜的弯曲。PSI 四聚体组装似乎增加了类囊体膜的表面积,这将有助于 PSI 拥挤。