Çoruh Orkun, Frank Anna, Tanaka Hideaki, Kawamoto Akihiro, El-Mohsnawy Eithar, Kato Takayuki, Namba Keiichi, Gerle Christoph, Nowaczyk Marc M, Kurisu Genji
Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, Japan.
Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
Commun Biol. 2021 Mar 8;4(1):304. doi: 10.1038/s42003-021-01808-9.
A high-resolution structure of trimeric cyanobacterial Photosystem I (PSI) from Thermosynechococcus elongatus was reported as the first atomic model of PSI almost 20 years ago. However, the monomeric PSI structure has not yet been reported despite long-standing interest in its structure and extensive spectroscopic characterization of the loss of red chlorophylls upon monomerization. Here, we describe the structure of monomeric PSI from Thermosynechococcus elongatus BP-1. Comparison with the trimer structure gave detailed insights into monomerization-induced changes in both the central trimerization domain and the peripheral regions of the complex. Monomerization-induced loss of red chlorophylls is assigned to a cluster of chlorophylls adjacent to PsaX. Based on our findings, we propose a role of PsaX in the stabilization of red chlorophylls and that lipids of the surrounding membrane present a major source of thermal energy for uphill excitation energy transfer from red chlorophylls to P700.
近20年前,来自嗜热栖热放线菌的三聚体蓝藻光系统I(PSI)的高分辨率结构作为PSI的首个原子模型被报道。然而,尽管长期以来人们对单体PSI的结构感兴趣,并且对单体化过程中红色叶绿素损失进行了广泛的光谱表征,但单体PSI的结构尚未被报道。在此,我们描述了来自嗜热栖热放线菌BP-1的单体PSI的结构。与三聚体结构的比较为复合物的中央三聚化结构域和外围区域中单体化诱导的变化提供了详细的见解。单体化诱导的红色叶绿素损失归因于与PsaX相邻的一组叶绿素。基于我们的发现,我们提出PsaX在稳定红色叶绿素中的作用,并且周围膜的脂质是红色叶绿素向P700进行上坡激发能量转移的主要热能来源。