de Lima Lemos Renato Alexandre, Silva Thiago Christiano, Tabak Benjamin Miranda
Universidade Católica de Brasília, QS 07 - Lote 01, EPCT - Taguatinga, Brasília - DF, Brasília, Distrito Federal 71966-700 Brazil.
School of Public Policy and Government, Fundação Getulio Vargas, SGAN 602, Asa Norte, Brasília, Distrito Federal 70830-020 Brazil.
Neural Comput Appl. 2022;34(14):11751-11768. doi: 10.1007/s00521-022-07067-x. Epub 2022 Mar 6.
This paper examines churn prediction of customers in the banking sector using a unique customer-level dataset from a large Brazilian bank. Our main contribution is in exploring this rich dataset, which contains prior client behavior traits that enable us to document new insights into the main determinants predicting future client churn. We conduct a horserace of many supervised machine learning algorithms under the same cross-validation and evaluation setup, enabling a fair comparison across algorithms. We find that the random forests technique outperforms decision trees, -nearest neighbors, elastic net, logistic regression, and support vector machines models in several metrics. Our investigation reveals that customers with a stronger relationship with the institution, who have more products and services, who borrow more from the bank, are less likely to close their checking accounts. Using a back-of-the-envelope estimation, we find that our model has the potential to forecast potential losses of up to 10% of the operating result reported by the largest Brazilian banks in 2019, suggesting the model has a significant economic impact. Our results corroborate the importance of investing in cross-selling and upselling strategies focused on their current customers. These strategies can have positive side effects on customer retention.
本文使用来自一家大型巴西银行的独特客户级数据集,研究了银行业客户的流失预测问题。我们的主要贡献在于探索这个丰富的数据集,其中包含先前客户行为特征,使我们能够记录有关预测未来客户流失的主要决定因素的新见解。我们在相同的交叉验证和评估设置下对许多监督机器学习算法进行了竞争,从而能够对各种算法进行公平比较。我们发现,在多个指标上,随机森林技术优于决策树、最近邻、弹性网络、逻辑回归和支持向量机模型。我们的调查表明,与机构关系更紧密、拥有更多产品和服务、从银行借款更多的客户关闭支票账户的可能性较小。通过粗略估计,我们发现我们的模型有可能预测高达2019年巴西最大银行报告的运营结果10%的潜在损失,这表明该模型具有重大的经济影响。我们的结果证实了投资于专注于现有客户的交叉销售和追加销售策略的重要性。这些策略对客户保留可能会产生积极的副作用。