Meng Jie, Lan Zhenyun, Lin Weihua, Liang Mingli, Zou Xianshao, Zhao Qian, Geng Huifang, Castelli Ivano E, Canton Sophie E, Pullerits Tönu, Zheng Kaibo
Department of Chemistry, Technical University of Denmark DK-2800 Kongens Lyngby Denmark
Department of Energy Conversion and Storage, Technical University of Denmark DK-2800 Kongens Lyngby Denmark.
Chem Sci. 2022 Jan 14;13(6):1734-1745. doi: 10.1039/d1sc05799e. eCollection 2022 Feb 9.
Hot carrier (HC) cooling accounts for the significant energy loss in lead halide perovskite (LHP) solar cells. Here, we study HC relaxation dynamics in Mn-doped LHP CsPbI nanocrystals (NCs), combining transient absorption spectroscopy and density functional theory (DFT) calculations. We demonstrate that Mn doping (1) enlarges the longitudinal optical (LO)-acoustic phonon bandgap, (2) enhances the electron-LO phonon coupling strength, and (3) adds HC relaxation pathways Mn orbitals within the bands. The spectroscopic study shows that the HC cooling process is decelerated after doping under band-edge excitation due to the dominant phonon bandgap enlargement. When the excitation photon energy is larger than the optical bandgap and the Mn transition gap, the doping accelerates the cooling rate owing to the dominant effect of enhanced carrier-phonon coupling and relaxation pathways. We demonstrate that such a phenomenon is optimal for the application of hot carrier solar cells. The enhanced electron-LO phonon coupling and accelerated cooling of high-temperature hot carriers efficiently establish a high-temperature thermal quasi-equilibrium where the excessive energy of the hot carriers is transferred to heat the cold carriers. On the other hand, the enlarged phononic band-gap prevents further cooling of such a quasi-equilibrium, which facilitates the energy conversion process. Our results manifest a straightforward methodology to optimize the HC dynamics for hot carrier solar cells by element doping.
热载流子(HC)冷却在卤化铅钙钛矿(LHP)太阳能电池中造成了显著的能量损失。在此,我们结合瞬态吸收光谱和密度泛函理论(DFT)计算,研究了掺锰LHP CsPbI纳米晶体(NCs)中的HC弛豫动力学。我们证明,锰掺杂(1)扩大了纵向光学(LO)-声学声子带隙,(2)增强了电子-LO声子耦合强度,并且(3)在能带内增加了HC通过锰轨道的弛豫途径。光谱研究表明,在带边激发下掺杂后,由于主要的声子带隙扩大,HC冷却过程减速。当激发光子能量大于光学带隙和锰跃迁带隙时,由于增强的载流子-声子耦合和弛豫途径的主导作用,掺杂加速了冷却速率。我们证明这种现象对于热载流子太阳能电池的应用是最优的。增强的电子-LO声子耦合和高温热载流子的加速冷却有效地建立了一个高温热准平衡,其中热载流子的多余能量被转移以加热冷载流子。另一方面,扩大的声子带隙阻止了这种准平衡的进一步冷却,这有利于能量转换过程。我们的结果展示了一种通过元素掺杂优化热载流子太阳能电池HC动力学的直接方法。