Moreau Liane M, Lapsheva Ekaterina, Amaro-Estrada Jorge I, Gau Michael R, Carroll Patrick J, Manor Brian C, Qiao Yusen, Yang Qiaomu, Lukens Wayne W, Sokaras Dimosthenis, Schelter Eric J, Maron Laurent, Booth Corwin H
Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA.
Department of Chemistry, University of Pennsylvania Philadelphia PA 19104 USA.
Chem Sci. 2022 Jan 24;13(6):1759-1773. doi: 10.1039/d1sc06623d. eCollection 2022 Feb 9.
This study presents the role of 5d orbitals in the bonding, and electronic and magnetic structure of Ce imido and oxo complexes synthesized with a tris(hydroxylaminato) [((2- BuNO)CHCH)N] (TriNO ) ligand framework, including the reported synthesis and characterization of two new alkali metal-capped Ce oxo species. X-ray spectroscopy measurements reveal that the imido and oxo materials exhibit an intermediate valent ground state of the Ce, displaying hallmark features in the Ce L absorption of partial f-orbital occupancy that are relatively constant for all measured compounds. These spectra feature a double peak consistent with other formal Ce(iv) compounds. Magnetic susceptibility measurements reveal enhanced levels of temperature-independent paramagnetism (TIP). In contrast to systems with direct bonding to an aromatic ligand, no clear correlation between the level of TIP and f-orbital occupancy is observed. CASSCF calculations defy a conventional van Vleck explanation of the TIP, indicating a single-reference ground state with no low-lying triplet excited state, despite accurately predicting the measured values of f-orbital occupancy. The calculations do, however, predict strong 4f/5d hybridization. In fact, within these complexes, despite having similar f-orbital occupancies and therefore levels of 4f/5d hybridization, the d-state distributions vary depending on the bonding motif (Ce[double bond, length as m-dash]O Ce[double bond, length as m-dash]N) of the complex, and can also be fine-tuned based on varying alkali metal cation capping species. This system therefore provides a platform for understanding the characteristic nature of Ce multiple bonds and potential impact that the associated d-state distribution may have on resulting reactivity.
本研究介绍了5d轨道在与三(羟氨基)[((2-丁基硝基)CHCH)N](TriNO )配体框架合成的铈亚胺基和氧代配合物的键合、电子和磁性结构中的作用,包括报道的两种新型碱金属封端的铈氧代物种的合成和表征。X射线光谱测量表明,亚胺基和氧代材料呈现铈的中间价基态,在Ce L吸收中显示出部分f轨道占据的标志性特征,对于所有测量的化合物来说相对恒定。这些光谱具有与其他形式的Ce(iv)化合物一致的双峰。磁化率测量揭示了与温度无关的顺磁性(TIP)水平的增强。与直接键合到芳族配体的体系相反,未观察到TIP水平与f轨道占据之间的明确相关性。CASSCF计算违背了对TIP的传统范弗莱克解释,表明是单参考基态且没有低能三重激发态,尽管准确预测了f轨道占据的测量值。然而,计算确实预测了强烈的4f/5d杂化。事实上,在这些配合物中,尽管具有相似的f轨道占据以及因此相似的4f/5d杂化水平,但d态分布根据配合物的键合模式(Ce[双键,长度为m破折号]O Ce[双键,长度为m破折号]N)而变化,并且也可以基于不同的碱金属阳离子封端物种进行微调。因此,该体系为理解铈多重键的特征性质以及相关d态分布可能对反应性产生的潜在影响提供了一个平台。