Suppr超能文献

基于极端样本估计遗传模型的数量性状基因座鉴定

Quantitative Trait Loci Identification by Estimating the Genetic Model based on the Extremal Samples.

作者信息

Yang Zining, Yang Yaning, Xu Xu Steven, Yuan Min

机构信息

1 Department of Statistics and Finance, University of Science and Technology of China, Hefei230026, China; 2Genmab US, Inc, Princeton, NJ08540, USA; 3Center for Data Science in Health, School of Public Health Administration, Anhui Medical University, Hefei230032, China.

出版信息

Curr Genomics. 2021 Dec 30;22(5):363-372. doi: 10.2174/1389202922666210625161602.

Abstract

BACKGROUND

In genetic association studies with quantitative trait loci (QTL), the association between a candidate genetic marker and the trait of interest is commonly examined by the omnibus F test or by the t-test corresponding to a given genetic model or mode of inheritance. It is known that the t-test with a correct model specification is more powerful than the F test. However, since the underlying genetic model is rarely known in practice, the use of a model-specific t-test may incur substantial power loss. Robust-efficient tests, such as the Maximin Efficiency Robust Test (MERT) and MAX3 have been proposed in the literature.

METHODS

In this paper, we propose a novel two-step robust-efficient approach, namely, the genetic model selection (GMS) method for quantitative trait analysis. GMS selects a genetic model by testing Hardy-Weinberg disequilibrium (HWD) with extremal samples of the population in the first step and then applies the corresponding genetic model-specific t-test in the second step.

RESULTS

Simulations show that GMS is not only more efficient than MERT and MAX3, but also has comparable power to the optimal t-test when the genetic model is known.

CONCLUSION

Application to the data from Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort demonstrates that the proposed approach can identify meaningful biological SNPs on chromosome 19.

摘要

背景

在数量性状基因座(QTL)的遗传关联研究中,候选基因标记与感兴趣性状之间的关联通常通过综合F检验或对应于给定遗传模型或遗传方式的t检验来进行检验。已知在模型设定正确的情况下,t检验比F检验更具功效。然而,由于实际中潜在的遗传模型很少为人所知,使用特定模型的t检验可能会导致功效大幅损失。文献中已经提出了稳健高效的检验方法,如极大极小效率稳健检验(MERT)和MAX3。

方法

在本文中,我们提出了一种新颖的两步稳健高效方法,即用于数量性状分析的遗传模型选择(GMS)方法。GMS方法第一步通过对群体的极端样本进行哈迪-温伯格不平衡(HWD)检验来选择遗传模型,然后在第二步应用相应的特定遗传模型t检验。

结果

模拟表明,GMS方法不仅比MERT和MAX3更有效,而且在已知遗传模型时,其功效与最优t检验相当。

结论

应用于阿尔茨海默病神经影像学倡议(ADNI)队列的数据表明,所提出的方法能够识别19号染色体上有意义的生物学单核苷酸多态性(SNP)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6397/8844942/61870501f882/CG-22-363_F1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验