Suppr超能文献

GWAR:全基因组关联研究的稳健分析与荟萃分析

GWAR: robust analysis and meta-analysis of genome-wide association studies.

作者信息

Dimou Niki L, Tsirigos Konstantinos D, Elofsson Arne, Bagos Pantelis G

机构信息

Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece.

Department of Hygiene and Epidemiology, School of Medicine, University of Ioannina, Ioannina, Greece.

出版信息

Bioinformatics. 2017 May 15;33(10):1521-1527. doi: 10.1093/bioinformatics/btx008.

Abstract

MOTIVATION

In the context of genome-wide association studies (GWAS), there is a variety of statistical techniques in order to conduct the analysis, but, in most cases, the underlying genetic model is usually unknown. Under these circumstances, the classical Cochran-Armitage trend test (CATT) is suboptimal. Robust procedures that maximize the power and preserve the nominal type I error rate are preferable. Moreover, performing a meta-analysis using robust procedures is of great interest and has never been addressed in the past. The primary goal of this work is to implement several robust methods for analysis and meta-analysis in the statistical package Stata and subsequently to make the software available to the scientific community.

RESULTS

The CATT under a recessive, additive and dominant model of inheritance as well as robust methods based on the Maximum Efficiency Robust Test statistic, the MAX statistic and the MIN2 were implemented in Stata. Concerning MAX and MIN2, we calculated their asymptotic null distributions relying on numerical integration resulting in a great gain in computational time without losing accuracy. All the aforementioned approaches were employed in a fixed or a random effects meta-analysis setting using summary data with weights equal to the reciprocal of the combined cases and controls. Overall, this is the first complete effort to implement procedures for analysis and meta-analysis in GWAS using Stata.

AVAILABILITY AND IMPLEMENTATION

A Stata program and a web-server are freely available for academic users at http://www.compgen.org/tools/GWAR.

CONTACT

pbagos@compgen.org.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

在全基因组关联研究(GWAS)的背景下,有多种统计技术可用于进行分析,但在大多数情况下,潜在的遗传模型通常是未知的。在这种情况下,经典的 Cochr an - Armitage 趋势检验(CATT)并非最优。采用能最大化检验效能并保持名义 I 型错误率的稳健方法更为可取。此外,使用稳健方法进行荟萃分析很有意义,且过去从未有过相关探讨。这项工作的主要目标是在统计软件包 Stata 中实现几种用于分析和荟萃分析的稳健方法,随后将该软件提供给科学界。

结果

在 Stata 中实现了隐性、加性和显性遗传模型下的 CATT,以及基于最大效率稳健检验统计量、MAX 统计量和 MIN2 的稳健方法。对于 MAX 和 MIN2,我们依靠数值积分计算了它们的渐近零分布,这在计算时间上有很大提升且不损失准确性。所有上述方法都用于固定效应或随机效应荟萃分析设置中,使用权重等于合并病例和对照倒数的汇总数据。总体而言,这是首次在 Stata 中完整实现 GWAS 分析和荟萃分析程序的尝试。

可用性与实现方式

学术用户可在 http://www.compgen.org/tools/GWAR 免费获取 Stata 程序和网络服务器。

联系方式

pbagos@compgen.org

补充信息

补充数据可在《生物信息学》在线获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验