Suppr超能文献

scMelody:一种通过重建细胞间相似性来增强基于共识的单细胞甲基化数据聚类模型。

scMelody: An Enhanced Consensus-Based Clustering Model for Single-Cell Methylation Data by Reconstructing Cell-to-Cell Similarity.

作者信息

Tian Qi, Zou Jianxiao, Tang Jianxiong, Liang Liang, Cao Xiaohong, Fan Shicai

机构信息

School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China.

Intelligent Terminal Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

Front Bioeng Biotechnol. 2022 Feb 23;10:842019. doi: 10.3389/fbioe.2022.842019. eCollection 2022.

Abstract

Single-cell DNA methylation sequencing technology has brought new perspectives to investigate epigenetic heterogeneity, supporting a need for computational methods to cluster cells based on single-cell methylation profiles. Although several methods have been developed, most of them cluster cells based on single (dis)similarity measures, failing to capture complete cell heterogeneity and resulting in locally optimal solutions. Here, we present scMelody, which utilizes an enhanced consensus-based clustering model to reconstruct cell-to-cell methylation similarity patterns and identifies cell subpopulations with the leveraged information from multiple basic similarity measures. Besides, benefitted from the reconstructed cell-to-cell similarity measure, scMelody could conveniently leverage the clustering validation criteria to determine the optimal number of clusters. Assessments on distinct real datasets showed that scMelody accurately recapitulated methylation subpopulations and outperformed existing methods in terms of both cluster partitions and the number of clusters. Moreover, when benchmarking the clustering stability of scMelody on a variety of synthetic datasets, it achieved significant clustering performance gains over existing methods and robustly maintained its clustering accuracy over a wide range of number of cells, number of clusters and CpG dropout proportions. Finally, the real case studies demonstrated the capability of scMelody to assess known cell types and uncover novel cell clusters.

摘要

单细胞DNA甲基化测序技术为研究表观遗传异质性带来了新视角,这表明需要有基于单细胞甲基化谱对细胞进行聚类的计算方法。尽管已经开发了几种方法,但大多数方法都是基于单一(不)相似性度量对细胞进行聚类,无法捕捉完整的细胞异质性,从而导致局部最优解。在此,我们提出了scMelody,它利用一种基于增强共识的聚类模型来重建细胞间甲基化相似性模式,并利用来自多个基本相似性度量的信息识别细胞亚群。此外,受益于重建的细胞间相似性度量,scMelody可以方便地利用聚类验证标准来确定最佳聚类数。对不同真实数据集的评估表明,scMelody能够准确地概括甲基化亚群,在聚类划分和聚类数量方面均优于现有方法。此外,在各种合成数据集上对scMelody的聚类稳定性进行基准测试时,它相对于现有方法在聚类性能上有显著提升,并且在广泛的细胞数量、聚类数量和CpG缺失比例范围内稳健地保持其聚类准确性。最后,实际案例研究证明了scMelody评估已知细胞类型和发现新细胞簇的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7de/8905497/e6921ef9b582/fbioe-10-842019-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验