Suppr超能文献

一种用于甲型H7N9禽流感患者个体化预后预测的动态模型。

A dynamic model for individualized prognosis prediction in patients with avian influenza A H7N9.

作者信息

Zhang Mingzhi, Xu Ke, Dai Qigang, You Dongfang, Yu Zhaolei, Bao Changjun, Zhao Yang

机构信息

Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, China.

Department of Acute Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.

出版信息

Ann Transl Med. 2022 Feb;10(3):149. doi: 10.21037/atm-21-4126.

Abstract

BACKGROUND

Avian influenza A H7N9 progresses rapidly and has a high case fatality rate. However, few models are available to predict the survival of individual patients with H7N9 infection in real-time. This study set out to construct a dynamic model for individual prognosis prediction based on multiple longitudinal measurements taken during hospitalization.

METHODS

The clinical and laboratory characteristics of 96 patients with H7N9 who were admitted to hospitals in Jiangsu between January 2016 and May 2017 were retrospectively investigated. A random forest model was applied to longitudinal data to select the biomarkers associated with prognostic outcome. Finally, a multivariate joint model was used to describe the time-varying effects of the biomarkers and calculate individual survival probabilities.

RESULTS

The random forest selected a set of significant biomarkers that had the lowest classification error rates in the feature selection phase, including C-reactive protein (CRP), blood urea nitrogen (BUN), procalcitonin (PCT), base excess (BE), lymphocyte count (LYMPH), white blood cell count (WBC), and creatine phosphokinase (CPK). The multivariate joint model was used to describe the effects of these biomarkers and characterize the dynamic progression of the prognosis. Combined with the covariates, the joint model displayed a good performance in discriminating survival outcomes in patients within a fixed time window of 3 days. During hospitalization, the areas under the curve were stable at 0.75.

CONCLUSIONS

Our study has established a novel model that is able to identify significant indicators associated with the prognostic outcomes of patients with H7N9, characterize the time-to-event process, and predict individual-level daily survival probabilities after admission.

摘要

背景

甲型H7N9禽流感进展迅速,病死率高。然而,几乎没有模型可用于实时预测H7N9感染个体患者的生存情况。本研究旨在基于住院期间的多次纵向测量构建个体预后预测动态模型。

方法

回顾性调查了2016年1月至2017年5月间江苏省收治的96例H7N9患者的临床和实验室特征。将随机森林模型应用于纵向数据以选择与预后结果相关的生物标志物。最后,使用多变量联合模型描述生物标志物的时变效应并计算个体生存概率。

结果

随机森林在特征选择阶段选择了一组分类错误率最低的重要生物标志物,包括C反应蛋白(CRP)、血尿素氮(BUN)、降钙素原(PCT)、碱剩余(BE)、淋巴细胞计数(LYMPH)、白细胞计数(WBC)和肌酸磷酸激酶(CPK)。多变量联合模型用于描述这些生物标志物的效应并表征预后的动态进展。结合协变量,联合模型在3天固定时间窗口内区分患者生存结果方面表现良好。住院期间,曲线下面积稳定在0.75。

结论

我们的研究建立了一种新型模型,该模型能够识别与H7N9患者预后结果相关的重要指标,表征事件发生时间过程,并预测入院后个体水平的每日生存概率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5b5/8904989/de77f6d71d55/atm-10-03-149-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验