Suppr超能文献

用于预测中度或重度小儿创伤性脑损伤预后的列线图的开发。

Development of a nomogram to predict the outcome of moderate or severe pediatric traumatic brain injury.

作者信息

Oearsakul Thakul, Tunthanathip Thara

机构信息

Department of Surgery, Division of Neurosurgery, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, Thailand.

出版信息

Turk J Emerg Med. 2022 Jan 20;22(1):15-22. doi: 10.4103/2452-2473.336107. eCollection 2022 Jan-Mar.

Abstract

OBJECTIVES

Traumatic brain injury (TBI) in children has become the major cause of mortality and morbidity in Thailand that has had an impact with economic consequences. This study aimed to develop and internally validate a nomogram for a 6-month follow-up outcome prediction in moderate or severe pediatric TBI.

METHODS

This retrospective cohort study involved 104 children with moderate or severe TBI. Various clinical variables were reviewed. The functional outcome was assessed at the hospital discharge and at a 6-month follow-up based on the King's Outcome Scale for Childhood Head Injury classification. Predictors associated with the 6-month follow-up outcome were developed from the predictive model using multivariable binary logistic regression to estimate the performance and internal validation. A nomogram was developed and presented as a predictive model.

RESULTS

The mean age of the samples was 99.75 months (standard deviation 59.65). Road traffic accidents were the highest injury mechanism at 84.6%. The predictive model comprised Glasgow Coma Scale of 3-8 (odds ratio [OR]: 16.07; 95% confidence interval [CI]: 1.27-202.42), pupillary response in one eye (OR 7.74; 95% CI 1.26-47.29), pupillary nonresponse in both eyes (OR: 57.74; 95% CI: 2.28-145.81), hypotension (OR: 19.54; 95%: CI 3.23-117.96), and subarachnoid hemorrhage (OR: 9.01, 95% CI: 1.33-60.80). The concordance statistic index (C-index) of the model's discrimination was 0.931, while the C-index following the bootstrapping and 5-cross validation were 0.920 and 0.924, respectively.

CONCLUSIONS

The performance of a clinical nomogram for predicting 6-month follow-up outcomes in pediatric TBI patients was assessed at an excellent level. However, further external validation would be required for the confirmation of the tool's performance.

摘要

目的

儿童创伤性脑损伤(TBI)已成为泰国儿童死亡和发病的主要原因,并产生了经济影响。本研究旨在开发并内部验证一个用于预测中度或重度小儿TBI 6个月随访结果的列线图。

方法

这项回顾性队列研究纳入了104例中度或重度TBI患儿。回顾了各种临床变量。根据儿童头部损伤国王预后量表分类,在出院时和6个月随访时评估功能结局。使用多变量二元逻辑回归从预测模型中得出与6个月随访结果相关的预测因素,以评估其性能并进行内部验证。开发了一个列线图并将其作为预测模型呈现。

结果

样本的平均年龄为99.75个月(标准差59.65)。道路交通事故是最主要的损伤机制,占84.6%。预测模型包括格拉斯哥昏迷量表评分为3 - 8分(比值比[OR]:16.07;95%置信区间[CI]:1.27 - 202.42)、单眼瞳孔反应(OR 7.74;95% CI 1.26 - 47.29)、双眼瞳孔无反应(OR:57.74;95% CI:2.28 - 145.81)、低血压(OR:19.54;95%:CI 3.23 - 117.96)和蛛网膜下腔出血(OR:9.01,95% CI:1.33 - 60.80)时。该模型判别能力的一致性统计指数(C指数)为0.931,而经过自抽样和5折交叉验证后的C指数分别为0.920和0.924。

结论

用于预测小儿TBI患者6个月随访结果的临床列线图性能评估为优秀水平。然而,需要进一步进行外部验证以确认该工具的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f211/8862794/bea09c1f762c/TJEM-22-15-g001.jpg

相似文献

1
Development of a nomogram to predict the outcome of moderate or severe pediatric traumatic brain injury.
Turk J Emerg Med. 2022 Jan 20;22(1):15-22. doi: 10.4103/2452-2473.336107. eCollection 2022 Jan-Mar.
2
Development and internal validation of a nomogram for predicting outcomes in children with traumatic subdural hematoma.
Acute Crit Care. 2022 Aug;37(3):429-437. doi: 10.4266/acc.2021.01795. Epub 2022 Jun 23.
3
Application of machine learning to predict the outcome of pediatric traumatic brain injury.
Chin J Traumatol. 2021 Nov;24(6):350-355. doi: 10.1016/j.cjtee.2021.06.003. Epub 2021 Jun 8.
4
Prognostic factors and clinical nomogram for in-hospital mortality in traumatic brain injury.
Am J Emerg Med. 2024 Mar;77:194-202. doi: 10.1016/j.ajem.2023.12.037. Epub 2023 Dec 29.
5
Clinical Nomogram Predicting Intracranial Injury in Pediatric Traumatic Brain Injury.
J Pediatr Neurosci. 2020 Oct-Dec;15(4):409-415. doi: 10.4103/jpn.JPN_11_20. Epub 2021 Jan 19.
8
Validation of a prognostic score for early mortality in severe head injury cases.
J Neurosurg. 2014 Dec;121(6):1314-22. doi: 10.3171/2014.7.JNS131874. Epub 2014 Sep 19.

引用本文的文献

1
Dynamic nomogram for predicting long-term survival in patients with brain abscess.
Chin Neurosurg J. 2025 Aug 7;11(1):15. doi: 10.1186/s41016-025-00402-w.
3
Development and validation of a dynamic nomogram for acute kidney injury prediction in ICU patients with acute heart failure.
Front Med (Lausanne). 2025 Feb 24;12:1544024. doi: 10.3389/fmed.2025.1544024. eCollection 2025.
4
Cost-effectiveness of intracranial pressure monitoring in severe traumatic brain injury in Southern Thailand.
Acute Crit Care. 2025 Feb;40(1):69-78. doi: 10.4266/acc.004080. Epub 2025 Feb 21.
5

本文引用的文献

2
Prognostic Factors and Nomogram Predicting Survival in Diffuse Astrocytoma.
J Neurosci Rural Pract. 2020 Jan;11(1):135-143. doi: 10.1055/s-0039-3403446. Epub 2020 Mar 3.
3
Prediction of Early TBI Mortality Using a Machine Learning Approach in a LMIC Population.
Front Neurol. 2020 Jan 24;10:1366. doi: 10.3389/fneur.2019.01366. eCollection 2019.
5
Predictive Risk Factors for Early Seizures in Traumatic Brain Injury.
J Neurosci Rural Pract. 2019 Oct;10(4):582-587. doi: 10.1055/s-0039-1700791. Epub 2019 Oct 23.
6
The identification of a subgroup of children with traumatic subarachnoid hemorrhage at low risk of neuroworsening.
J Neurosurg Pediatr. 2018 Nov 1;22(5):559-566. doi: 10.3171/2018.5.PEDS18140. Epub 2018 Aug 10.
7
Traumatic brain injury in Indian children.
Childs Nerv Syst. 2018 Jun;34(6):1119-1123. doi: 10.1007/s00381-018-3784-z. Epub 2018 Mar 29.
9
The burden of traumatic brain injury in children.
Lancet. 2018 Mar 3;391(10123):813. doi: 10.1016/S0140-6736(18)30547-6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验