Suppr超能文献

使用无监督机器学习对多发性硬化症患者进行分层:单次就诊 MRI 驱动方法。

Stratification of multiple sclerosis patients using unsupervised machine learning: a single-visit MRI-driven approach.

机构信息

Department of Advanced Biomedical Sciences, University "Federico II", Via Pansini 5, 80131, Naples, Italy.

Department of Electrical Engineering and Information Technology (DIETI), University "Federico II", Naples, Italy.

出版信息

Eur Radiol. 2022 Aug;32(8):5382-5391. doi: 10.1007/s00330-022-08610-z. Epub 2022 Mar 14.

Abstract

OBJECTIVES

To stratify patients with multiple sclerosis (pwMS) based on brain MRI-derived volumetric features using unsupervised machine learning.

METHODS

The 3-T brain MRIs of relapsing-remitting pwMS including 3D-T1w and FLAIR-T2w sequences were retrospectively collected, along with Expanded Disability Status Scale (EDSS) scores and long-term (10 ± 2 years) clinical outcomes (EDSS, cognition, and progressive course). From the MRIs, volumes of demyelinating lesions and 116 atlas-defined gray matter regions were automatically segmented and expressed as z-scores referenced to external populations. Following feature selection, baseline MRI-derived biomarkers entered the Subtype and Stage Inference (SuStaIn) algorithm, which estimates subgroups characterized by distinct patterns of biomarker evolution and stages within subgroups. The trained model was then applied to longitudinal MRIs. Stability of subtypes and stage change over time were assessed via Krippendorf's α and multilevel linear regression models, respectively. The prognostic relevance of SuStaIn classification was assessed with ordinal/logistic regression analyses.

RESULTS

We selected 425 pwMS (35.9 ± 9.9 years; F/M: 301/124), corresponding to 1129 MRI scans, along with healthy controls (N = 148; 35.9 ± 13.0 years; F/M: 77/71) and external pwMS (N = 80; 40.4 ± 11.9 years; F/M: 56/24) as reference populations. Based on 11 biomarkers surviving feature selection, two subtypes were identified, designated as "deep gray matter (DGM)-first" subtype (N = 238) and "cortex-first" subtype (N = 187) according to the atrophy pattern. Subtypes were consistent over time (α = 0.806), with significant annual stage increase (b = 0.20; p < 0.001). EDSS was associated with stage and DGM-first subtype (p ≤ 0.02). Baseline stage predicted long-term disability, transition to progressive course, and cognitive impairment (p ≤ 0.03), with the latter also associated with DGM-first subtype (p = 0.005).

CONCLUSIONS

Unsupervised learning modelling of brain MRI-derived volumetric features provides a biologically reliable and prognostically meaningful stratification of pwMS.

KEY POINTS

• The unsupervised modelling of brain MRI-derived volumetric features can provide a single-visit stratification of multiple sclerosis patients. • The so-obtained classification tends to be consistent over time and captures disease-related brain damage progression, supporting the biological reliability of the model. • Baseline stratification predicts long-term clinical disability, cognition, and transition to secondary progressive course.

摘要

目的

使用无监督机器学习对多发性硬化症(pwMS)患者进行基于脑 MRI 容积特征的分层。

方法

回顾性收集了复发缓解型 pwMS 的 3T 脑部 MRI,包括 3D-T1w 和 FLAIR-T2w 序列,以及扩展残疾状况量表(EDSS)评分和长期(10±2 年)临床结局(EDSS、认知和进展病程)。从 MRI 中自动分割脱髓鞘病变和 116 个图谱定义的灰质区域的体积,并表示为参考外部人群的 z 分数。在特征选择之后,基线 MRI 衍生的生物标志物进入亚型和阶段推断(SuStaIn)算法,该算法估计具有不同生物标志物演变模式和亚组内阶段的亚组。然后将训练好的模型应用于纵向 MRI。通过克里彭多夫 α和多层次线性回归模型分别评估亚型的稳定性和随时间的阶段变化。使用有序/逻辑回归分析评估 SuStaIn 分类的预后相关性。

结果

我们选择了 425 名 pwMS(35.9±9.9 岁;F/M:301/124),对应 1129 次 MRI 扫描,以及健康对照者(N=148;35.9±13.0 岁;F/M:77/71)和外部 pwMS(N=80;40.4±11.9 岁;F/M:56/24)作为参考人群。基于 11 个经过特征选择幸存的生物标志物,根据萎缩模式确定了两种亚型,分别命名为“深部灰质(DGM)优先”亚型(N=238)和“皮质优先”亚型(N=187)。亚型随时间保持一致(α=0.806),具有显著的年度阶段增加(b=0.20;p<0.001)。EDSS 与阶段和 DGM-优先亚型相关(p≤0.02)。基线阶段预测长期残疾、进展病程和认知障碍(p≤0.03),后者也与 DGM-优先亚型相关(p=0.005)。

结论

基于脑 MRI 容积特征的无监督学习建模可对 pwMS 进行生物可靠且具有预后意义的分层。

关键点

• 基于脑 MRI 容积特征的无监督学习建模可以对多发性硬化症患者进行单次就诊的分层。

• 所获得的分类在时间上趋于一致,并能捕捉到与疾病相关的脑损伤进展,支持模型的生物学可靠性。

• 基线分层预测长期临床残疾、认知功能和向继发性进展病程的转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e833/9279232/c7b75d040175/330_2022_8610_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验