中枢神经系统脱髓鞘疾病及其模仿者的当前成像应用、放射组学和机器学习模式。
Current imaging applications, radiomics, and machine learning modalities of CNS demyelinating disorders and its mimickers.
作者信息
Alam Zahin, Maddali Anirudh, Patel Shiv, Weber Nicole, Al Rikabi Shahad, Thiemann Daniel, Desai Kush, Monoky David
机构信息
Department of Radiology, Hackensack Meridian School of Medicine, 123 Metro Blvd, Nutley, NJ, 07110, USA.
出版信息
J Neurol. 2025 Aug 12;272(9):568. doi: 10.1007/s00415-025-13253-3.
Distinguishing among neuroinflammatory demyelinating diseases of the central nervous system can present a significant diagnostic challenge due to substantial overlap in clinical presentations and imaging features. Collaboration between specialists, novel antibody testing, and dedicated magnetic resonance imaging protocols have helped to narrow the diagnostic gap, but challenging cases remain. Machine learning algorithms have proven to be able to identify subtle patterns that escape even the most experienced human eye. Indeed, machine learning and the subfield of radiomics have demonstrated exponential growth and improvement in diagnosis capacity within the past decade. The sometimes daunting diagnostic overlap of various demyelinating processes thus provides a unique opportunity: can the elite pattern recognition powers of machine learning close the gap in making the correct diagnosis? This review specifically focuses on neuroinflammatory demyelinating diseases, exploring the role of artificial intelligence in the detection, diagnosis, and differentiation of the most common pathologies: multiple sclerosis (MS), neuromyelitis optica spectrum disorder (NMOSD), acute disseminated encephalomyelitis (ADEM), Sjogren's syndrome, MOG antibody-associated disorder (MOGAD), and neuropsychiatric systemic lupus erythematosus (NPSLE). Understanding how these tools enhance diagnostic precision may lead to earlier intervention, improved outcomes, and optimized management strategies.
由于中枢神经系统神经炎性脱髓鞘疾病在临床表现和影像学特征上存在大量重叠,因此对其进行区分可能带来重大的诊断挑战。专家之间的协作、新型抗体检测以及专门的磁共振成像方案有助于缩小诊断差距,但仍存在具有挑战性的病例。机器学习算法已被证明能够识别即使是最有经验的人眼也难以察觉的细微模式。事实上,在过去十年中,机器学习和放射组学子领域在诊断能力方面呈现出指数级增长和提升。各种脱髓鞘过程有时令人望而生畏的诊断重叠因此提供了一个独特的机会:机器学习卓越的模式识别能力能否缩小做出正确诊断的差距?本综述特别关注神经炎性脱髓鞘疾病,探讨人工智能在检测、诊断和区分最常见病理情况中的作用:多发性硬化症(MS)、视神经脊髓炎谱系障碍(NMOSD)、急性播散性脑脊髓炎(ADEM)、干燥综合征、MOG抗体相关疾病(MOGAD)以及神经精神性系统性红斑狼疮(NPSLE)。了解这些工具如何提高诊断精度可能会带来更早的干预、更好的治疗效果以及优化的管理策略。