Department of Diagnostic Radiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
Department of Radiology, Dokkyo Medical University Saitama Medical Center, 2-1-50 Minamikoshigaya, Koshigaya, Saitama, 343 - 8555, Japan.
Jpn J Radiol. 2022 Aug;40(8):814-822. doi: 10.1007/s11604-022-01261-6. Epub 2022 Mar 14.
To investigate the ability of deep learning (DL) using convolutional neural networks (CNNs) for distinguishing between normal and metastatic axillary lymph nodes on ultrasound images by comparing the diagnostic performance of radiologists.
We retrospectively gathered 300 images of normal and 328 images of axillary lymph nodes with breast cancer metastases for training. A DL model using the CNN architecture Xception was developed to analyze test data of 50 normal and 50 metastatic lymph nodes. A board-certified radiologist with 12 years' experience. (Reader 1) and two residents with 3- and 1-year experience (Readers 2, 3), respectively, scored these test data with and without the assistance of the DL system for the possibility of metastasis. The sensitivity, specificity, and area under the receiver operating characteristic curve (AUC) were calculated.
Our DL model had a sensitivity of 94%, a specificity of 88%, and an AUC of 0.966. The AUC of the DL model was not significantly different from that of Reader 1 (0.969; p = 0.881) and higher than that of Reader 2 (0.913; p = 0.101) and Reader 3 (0.810; p < 0.001). With the DL support, the AUCs of Readers 2 and 3 increased to 0.960 and 0.937, respectively, which were comparable to those of Reader 1 (p = 0.138 and 0.700, respectively).
Our DL model demonstrated great diagnostic performance for differentiating benign from malignant axillary lymph nodes on breast ultrasound and for potentially providing effective diagnostic support to residents.
通过比较放射科医生的诊断性能,研究深度学习(DL)使用卷积神经网络(CNN)在超声图像上区分正常和转移性腋窝淋巴结的能力。
我们回顾性收集了 300 张正常腋窝淋巴结图像和 328 张乳腺癌转移腋窝淋巴结图像用于训练。开发了一种基于 Xception 卷积神经网络架构的 DL 模型,用于分析 50 个正常和 50 个转移性淋巴结的测试数据。一位具有 12 年经验的认证放射科医生(Reader 1)和两位具有 3 年和 1 年经验的住院医师(Readers 2 和 3)分别在不使用和使用 DL 系统的情况下对这些测试数据进行评分,以评估转移的可能性。计算了敏感性、特异性和受试者工作特征曲线(ROC)下的面积(AUC)。
我们的 DL 模型的敏感性为 94%,特异性为 88%,AUC 为 0.966。DL 模型的 AUC 与 Reader 1(0.969;p=0.881)无显著差异,且高于 Reader 2(0.913;p=0.101)和 Reader 3(0.810;p<0.001)。在 DL 支持下,Readers 2 和 3 的 AUC 分别增加到 0.960 和 0.937,与 Reader 1 相当(p=0.138 和 0.700)。
我们的 DL 模型在乳腺超声上区分良性和恶性腋窝淋巴结具有出色的诊断性能,并有可能为住院医师提供有效的诊断支持。