Suppr超能文献

通过共溶剂辅助相变调控高性能刀片涂层钙钛矿太阳能电池的结晶动力学

Manipulating Crystallization Kinetics in High-Performance Blade-Coated Perovskite Solar Cells via Cosolvent-Assisted Phase Transition.

作者信息

Liang Qiong, Liu Kuan, Sun Mingzi, Ren Zhiwei, Fong Patrick W K, Huang Jiaming, Qin Minchao, Wu Zehan, Shen Dong, Lee Chun-Sing, Hao Jianhua, Lu Xinhui, Huang Bolong, Li Gang

机构信息

Department of Electronic and Information Engineering, Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.

Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, Guangdong, 518057, China.

出版信息

Adv Mater. 2022 Apr;34(16):e2200276. doi: 10.1002/adma.202200276. Epub 2022 Mar 14.

Abstract

Manipulating the perovskite solidification process, including nucleation and crystal growth, plays a critical role in controlling film morphology and thus affects the resultant device performance. In this work, a facile and effective ethyl alcohol (EtOH) cosolvent strategy is demonstrated with the incorporation of EtOH into perovskite ink for high-performance room-temperature blade-coated perovskite solar cells (PSCs) and modules. Systematic real-time perovskite crystallization studies uncover the delicate perovskite structural evolutions and phase-transition pathway. Time-resolved X-ray diffraction and density functional theory calculations both demonstrate that EtOH in the mixed-solvent system significantly promotes the formation of an FA-based precursor solvate (FA PbBr ·DMSO) during the trace-solvent-assisted transition process, which finely regulates the balance between nucleation and crystal growth to guarantee high-quality perovskite films. This strategy efficiently suppresses nonradiative recombination and improves efficiencies in both 1.54 (23.19%) and 1.60 eV (22.51%) perovskite systems, which represents one of the highest records for blade-coated PSCs in both small-area devices and minimodules. An excellent V deficit as low as 335 mV in the 1.54 eV perovskite system, coincident with the measured nonradiative recombination loss of only 77 mV, is achieved. More importantly, significantly enhanced device stability is another signature of this approach.

摘要

控制钙钛矿的凝固过程,包括成核和晶体生长,对于控制薄膜形态起着关键作用,进而影响最终器件的性能。在这项工作中,展示了一种简便有效的乙醇(EtOH)共溶剂策略,即将EtOH加入钙钛矿油墨中,用于制备高性能室温刮刀涂布钙钛矿太阳能电池(PSC)及其组件。系统的实时钙钛矿结晶研究揭示了钙钛矿微妙的结构演变和相变途径。时间分辨X射线衍射和密度泛函理论计算均表明,混合溶剂体系中的EtOH在微量溶剂辅助的转变过程中显著促进了基于FA的前驱体溶剂化物(FA PbBr·DMSO)的形成,这精细地调节了成核与晶体生长之间的平衡,以确保高质量的钙钛矿薄膜。该策略有效抑制了非辐射复合,并提高了1.54(23.19%)和1.60 eV(22.51%)钙钛矿体系的效率,这在小面积器件和微型组件中均代表了刮刀涂布PSC的最高记录之一。在1.54 eV钙钛矿体系中实现了低至335 mV的出色V缺,这与仅77 mV的实测非辐射复合损失相一致。更重要的是,显著提高的器件稳定性是该方法的另一个特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验