Suppr超能文献

具有超分子组装模板的埋入界面调控可实现高性能钙钛矿太阳能电池,以最小化电压损失。

Buried Interface Regulation with a Supramolecular Assembled Template Enables High-Performance Perovskite Solar Cells for Minimizing the V Deficit.

作者信息

Wang Zhenrong, Liang Qiong, Li Mingliang, Sun Guohao, Li Shiang, Zhu Tao, Han Yu, Xia Hao, Ren Zhiwei, Yu Bingcheng, Zhang Jiyao, Ma Ruijie, Thachoth Chandran Hrisheekesh, Cheng Lei, Zhang Liren, Li Dongyang, Chen Shuyan, Lu Xinhui, Yan Chang, Azmi Randi, Liu Kuan, Tang Jinyao, Li Gang

机构信息

Department of Electrical and Electronic Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China.

School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-SZ), Guangdong, 518172, China.

出版信息

Adv Mater. 2025 Jun;37(24):e2418011. doi: 10.1002/adma.202418011. Epub 2025 Apr 9.

Abstract

Despite the rapid development of perovskite solar cells (PSCs) in the past decade, the open-circuit voltage (V) of PSCs still lags behind the theoretical Shockley-Queisser limit. Energy-level mismatch and unwanted nonradiative recombination at key interfaces are the main factors detrimental to V. Herein, a perovskite crystallization-driven template is constructed at the SnO/perovskite buried interface through a self-assembled amphiphilic phosphonate derivative. The highly oriented supramolecular template grows from an evolutionary selection growth via solid-solid phase transition. This strategy induces perovskite crystallization into a highly preferred (100) orientation toward out-of-plane direction and facilitated carrier extraction and transfer due to the elimination of energy barrier. This self-assembly process positively passivates the intrinsic surface defects at the SnO/perovskite interface through the functionalized moieties, a marked contrast to the passive effect achieved via incidental contacts in conventional passivation methods. As a result, PSCs with buried interface modification exhibit a promising PCE of 25.34%, with a maximum V of 1.23 V, corresponding to a mere 0.306 V deficit (for perovskite bandgap of 1.536 eV), reaching 97.2% of the theoretical V limit. This strategy spontaneously improves the long-term operational stability of PSCs under thermal and moisture stress (ISOS-L-3: MPP, 65 °C, 50% RH, T lifetime exceeding 1200 h).

摘要

尽管在过去十年中钙钛矿太阳能电池(PSC)发展迅速,但其开路电压(V)仍落后于理论上的肖克利-奎塞尔极限。关键界面处的能级失配和不必要的非辐射复合是不利于V的主要因素。在此,通过自组装两亲性膦酸酯衍生物在SnO/钙钛矿掩埋界面构建了一个钙钛矿结晶驱动模板。高度取向的超分子模板通过固-固相变从进化选择生长中形成。该策略诱导钙钛矿结晶成高度择优的(100)取向,朝着面外方向,并且由于消除了能垒而促进了载流子的提取和转移。这种自组装过程通过功能化部分积极地钝化了SnO/钙钛矿界面处的固有表面缺陷,这与传统钝化方法中通过偶然接触实现的钝化效果形成了显著对比。结果,具有掩埋界面修饰的PSC表现出25.34%的有前景的光电转换效率(PCE),最大V为1.23 V,对应于仅0.306 V的差距(对于1.536 eV的钙钛矿带隙),达到理论V极限的97.2%。该策略自发地提高了PSC在热和湿度应力下的长期运行稳定性(ISOS-L-3:最大功率点,65°C,50%相对湿度,T寿命超过1200小时)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe8f/12177849/413783abdf09/ADMA-37-2418011-g005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验