Department of Biology, Portland State University, Portland, Oregon, USA.
Department of Restorative Dentistry, School of Dentistry, Oregon Health and Science University, Portland, Oregon, USA.
J Bacteriol. 2022 Apr 19;204(4):e0057721. doi: 10.1128/jb.00577-21. Epub 2022 Mar 14.
Streptococcus mutans is a major pathobiont involved in the development of dental caries. Its ability to utilize numerous sugars and to effectively respond to environmental stress promotes S. mutans proliferation in oral biofilms. Because of their quick action and low energetic cost, noncoding small RNAs (sRNAs) represent an ideal mode of gene regulation in stress response networks, yet their roles in oral pathogens have remained largely unexplored. We identified 15 novel sRNAs in S. mutans and show that they respond to four stress-inducing conditions commonly encountered by the pathogen in human mouth: sugar-phosphate stress, hydrogen peroxide exposure, high temperature, and low pH. To better understand the role of sRNAs in S. mutans, we further explored the function of the novel sRNA SmsR4. Our data demonstrate that SmsR4 regulates the enzyme IIA (EIIA) component of the sorbitol phosphotransferase system, which transports and phosphorylates the sugar alcohol sorbitol. The fine-tuning of EIIA availability by SmsR4 likely promotes S. mutans growth while using sorbitol as the main carbon source. Our work lays a foundation for understanding the role of sRNAs in regulating gene expression in stress response networks in S. mutans and highlights the importance of the underexplored phenomenon of posttranscriptional gene regulation in oral bacteria. Small RNAs (sRNAs) are important gene regulators in bacteria, but the identities and functions of sRNAs in Streptococcus mutans, the principal bacterium involved in the formation of dental caries, are unknown. In this study, we identified 15 putative sRNAs in S. mutans and show that they respond to four common stress-inducing conditions present in human mouth: sugar-phosphate stress, hydrogen peroxide exposure, high temperature, and low pH. We further show that the novel sRNA SmsR4 likely modulates sorbitol transport into the cell by regulating SMU_313 mRNA, which encodes the EIIA subunit of the sorbitol phosphotransferase system. Gaining a better understanding of sRNA-based gene regulation may provide new opportunities to develop specific inhibitors of S. mutans growth, thereby improving oral health.
变形链球菌是参与龋齿形成的主要共生病原体。其利用多种糖的能力和有效应对环境压力的能力促进了口腔生物膜中变形链球菌的增殖。由于其快速作用和低能量成本,非编码小 RNA(sRNA)代表了应激反应网络中基因调控的理想模式,但它们在口腔病原体中的作用在很大程度上仍未得到探索。我们在变形链球菌中鉴定了 15 种新的 sRNA,并表明它们对口腔中常见的四种应激诱导条件有反应:糖-磷酸盐应激、过氧化氢暴露、高温和低 pH 值。为了更好地理解 sRNA 在变形链球菌中的作用,我们进一步探索了新型 sRNA SmsR4 的功能。我们的数据表明,SmsR4 调节山梨醇磷酸转移酶系统的酶 IIA(EIIA)组成部分,该系统运输并磷酸化糖醇山梨醇。SmsR4 对 EIIA 的精细调节可能促进了变形链球菌的生长,同时将山梨醇作为主要碳源。我们的工作为理解 sRNA 在调节变形链球菌应激反应网络中基因表达中的作用奠定了基础,并强调了口腔细菌中转录后基因调控这一未被充分探索的现象的重要性。sRNA 是细菌中重要的基因调节剂,但在形成龋齿的主要细菌变形链球菌中,sRNA 的身份和功能尚不清楚。在这项研究中,我们在变形链球菌中鉴定了 15 个假定的 sRNA,并表明它们对口腔中存在的四种常见应激诱导条件有反应:糖-磷酸盐应激、过氧化氢暴露、高温和低 pH 值。我们进一步表明,新型 sRNA SmsR4 可能通过调节 SMU_313 mRNA 来调节山梨醇进入细胞的运输,SMU_313 mRNA 编码山梨醇磷酸转移酶系统的 EIIA 亚基。更好地理解 sRNA 介导的基因调控可能为开发针对变形链球菌生长的特异性抑制剂提供新的机会,从而改善口腔健康。