Suppr超能文献

人工智能可以在对比增强胸部计算机断层扫描上检测到左心室扩张,相对于心脏磁共振成像。

Artificial intelligence can detect left ventricular dilatation on contrast-enhanced thoracic computer tomography relative to cardiac magnetic resonance imaging.

机构信息

Medical School, University of Bristol, Bristol, UK.

Department of Radiology, Royal United Hospital, Bath, UK.

出版信息

Br J Radiol. 2022 Sep 1;95(1138):20210852. doi: 10.1259/bjr.20210852. Epub 2022 Mar 18.

Abstract

OBJECTIVES

To assess the diagnostic accuracy of an automated algorithm to detect left ventricular (LV) dilatation on non-ECG gated CT, using cardiac magnetic resonance (CMR) as reference standard.

METHODS

Consecutive patients with contrast-enhanced CT thorax and CMR within 31 days (2016-2020) were analysed ( = 84). LV dilatation was defined against age-, sex- and body surface area-specific values for CMR. CTs underwent automated artificial intelligence(AI)-derived analysis that segmented ventricular chambers, presenting maximal LV diameter and volume. Area under the receiver operator curve (AUC-ROC) analysis identified CT thresholds with ≥90% sensitivity and highest specificity and ≥90% specificity with highest sensitivity. Youden's Index was used to identify thresholds with optimised sensitivity and specificity.

RESULTS

Automated diameter analysis was feasible in 92% of cases (77/84; 45 men, age 61 ± 14 years, mean CT to CMR interval 10 ± 8 days). Relative to CMR as a reference standard, 45% had LV dilatation. In males, an automated LV diameter measurement of ≥55.5 mm was ≥90% specific for CMR-defined LV dilatation (positive predictive value (PPV) 85.7%, negative predictive value (NPV) 61.2%, accuracy 68.9%). In females, an LV diameter of ≥49.7 mm was ≥90% specific for CMR-defined LV dilatation (PPV 66.7%, NPV 73.1%, accuracy 71.9%). AI CT volumetry data did not significantly improve AUC performance.

CONCLUSION

Fully automated AI-derived analysis LV dilatation on routine unselected non-gated contrast-enhanced CT thorax studies is feasible. We have defined thresholds for the detection of LV dilatation on CT relative to CMR, which could be used to routinely screen for dilated cardiomyopathy at the time of CT.

ADVANCES IN KNOWLEDGE

We show, for the first time, that a fully-automated AI-derived analysis of maximal LV chamber axial diameter on non-ECG-gated thoracic CT is feasible in unselected real-world cases and that the derived measures can predict LV dilatation relative to cardiac magnetic resonance imaging, the non-invasive reference standard for determining cardiac chamber size. We have derived sex-specific cut-off values to screen for LV dilatation on routine contrast-enhanced thoracic CT. Future work should validate these thresholds and determine if technology can alter clinical outcomes in a cost-effective manner.

摘要

目的

使用心脏磁共振(CMR)作为参考标准,评估自动算法检测非心电图门控 CT 上左心室(LV)扩张的诊断准确性。

方法

对 2016 年至 2020 年期间连续接受增强 CT 胸部和 CMR 检查且时间间隔在 31 天内的患者进行分析(n=84)。LV 扩张根据 CMR 的年龄、性别和体表面积特定值进行定义。CT 进行了自动人工智能(AI)衍生分析,对心室腔进行分割,呈现最大 LV 直径和体积。接收者操作特征曲线(AUC-ROC)分析确定了具有≥90%灵敏度和最高特异性以及≥90%特异性和最高灵敏度的 CT 阈值。Youden 指数用于确定具有最佳灵敏度和特异性的阈值。

结果

在 84 例患者中,92%(77/84;45 名男性,年龄 61±14 岁,CT 与 CMR 间隔平均 10±8 天)的自动直径分析是可行的。与 CMR 作为参考标准相比,45%的患者有 LV 扩张。在男性中,自动 LV 直径测量值≥55.5mm 对 CMR 定义的 LV 扩张具有≥90%的特异性(阳性预测值(PPV)85.7%,阴性预测值(NPV)61.2%,准确性 68.9%)。在女性中,LV 直径≥49.7mm 对 CMR 定义的 LV 扩张具有≥90%的特异性(PPV 66.7%,NPV 73.1%,准确性 71.9%)。AI CT 容积数据并未显著提高 AUC 性能。

结论

在常规未选择的非门控对比增强 CT 胸部研究中,全自动 AI 衍生的 LV 扩张分析是可行的。我们已经确定了 CT 相对于 CMR 检测 LV 扩张的阈值,这可以用于在 CT 时常规筛查扩张型心肌病。

知识的进步

我们首次表明,在未选择的真实病例中,基于非心电图门控胸部 CT 的全自动 AI 衍生最大 LV 腔轴向直径分析是可行的,并且所得到的测量值可以预测相对于心脏磁共振成像(确定心脏腔室大小的非侵入性参考标准)的 LV 扩张。我们已经得出了用于在常规对比增强胸部 CT 上筛查 LV 扩张的性别特异性截断值。未来的工作应该验证这些阈值,并确定技术是否可以以具有成本效益的方式改变临床结果。

相似文献

本文引用的文献

9
Evolving concepts in dilated cardiomyopathy.扩张型心肌病的概念演变。
Eur J Heart Fail. 2018 Feb;20(2):228-239. doi: 10.1002/ejhf.1103. Epub 2017 Dec 22.
10
Electrocardiographic recognition of right ventricular hypertrophy.右心室肥大的心电图识别
J Electrocardiol. 2018 Jan-Feb;51(1):46-49. doi: 10.1016/j.jelectrocard.2017.09.004. Epub 2017 Sep 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验