Suppr超能文献

基于深度三维卷积神经网络的冠状动脉 CT 血管造影自动冠状动脉粥样硬化检测和弱监督定位。

Automated coronary artery atherosclerosis detection and weakly supervised localization on coronary CT angiography with a deep 3-dimensional convolutional neural network.

机构信息

Laboratory for Augmented Intelligence in Imaging of the Department of Radiology, The Ohio State University College of Medicine, United States.

Laboratory for Augmented Intelligence in Imaging of the Department of Radiology, The Ohio State University College of Medicine, United States.

出版信息

Comput Med Imaging Graph. 2020 Jul;83:101721. doi: 10.1016/j.compmedimag.2020.101721. Epub 2020 Apr 27.

Abstract

We propose a fully automated algorithm based on a deep learning framework enabling screening of a coronary computed tomography angiography (CCTA) examination for confident detection of the presence or absence of coronary artery atherosclerosis. The system starts with extracting the coronary arteries and their branches from CCTA datasets and representing them with multi-planar reformatted volumes; pre-processing and augmentation techniques are then applied to increase the robustness and generalization ability of the system. A 3-dimensional convolutional neural network (3D-CNN) is utilized to model pathological changes (e.g., atherosclerotic plaques) in coronary vessels. The system learns the discriminatory features between vessels with and without atherosclerosis. The discriminative features at the final convolutional layer are visualized with a saliency map approach to provide visual clues related to atherosclerosis likelihood and location. We have evaluated the system on a reference dataset representing 247 patients with atherosclerosis and 246 patients free of atherosclerosis. With five fold cross-validation, an Accuracy = 90.9%, Positive Predictive Value = 58.8%, Sensitivity = 68.9%, Specificity of 93.6%, and Negative Predictive Value (NPV) = 96.1% are achieved at the artery/branch level with threshold 0.5. The average area under the receiver operating characteristic curve is 0.91. The system indicates a high NPV, which may be potentially useful for assisting interpreting physicians in excluding coronary atherosclerosis in patients with acute chest pain.

摘要

我们提出了一种基于深度学习框架的全自动算法,能够对冠状动脉 CT 血管造影(CCTA)检查进行筛选,以自信地检测冠状动脉粥样硬化的存在与否。该系统从 CCTA 数据集提取冠状动脉及其分支,并将其表示为多平面重建体积;然后应用预处理和增强技术来提高系统的鲁棒性和泛化能力。使用三维卷积神经网络(3D-CNN)来模拟冠状动脉中病变(例如,粥样斑块)。该系统学习有和无动脉粥样硬化的血管之间的鉴别特征。在最后一个卷积层的鉴别特征通过显著图方法进行可视化,以提供与动脉粥样硬化可能性和位置相关的视觉线索。我们在一个参考数据集上评估了该系统,该数据集代表了 247 例动脉粥样硬化患者和 246 例无动脉粥样硬化患者。在五折交叉验证中,在阈值为 0.5 时,在动脉/分支水平上实现了 90.9%的准确度、58.8%的阳性预测值、68.9%的灵敏度、93.6%的特异性和 96.1%的阴性预测值(NPV)。平均接收者操作特征曲线下面积为 0.91。该系统表明具有较高的 NPV,这可能有助于协助解释医师排除急性胸痛患者的冠状动脉粥样硬化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验