Suppr超能文献

基于模糊模型的混合网络攻击下自动驾驶车辆系统的横向控制

Fuzzy-Model-Based Lateral Control for Networked Autonomous Vehicle Systems Under Hybrid Cyber-Attacks.

出版信息

IEEE Trans Cybern. 2023 Apr;53(4):2600-2609. doi: 10.1109/TCYB.2022.3151880. Epub 2023 Mar 16.

Abstract

This article addresses the problem of lateral control problem for networked-based autonomous vehicle systems. A novel solution is presented for nonlinear autonomous vehicles to smoothly follow the planned path under external disturbances and network-induced issues, such as cyber-attacks, time delays, and limited bandwidths. First, a fuzzy-model-based system is established to represent the nonlinear networked vehicle systems subject to hybrid cyber-attacks. To reduce the network burden and effects of cyber-attacks, an asynchronous resilient event-triggered scheme (ETS) is proposed. A dynamic output-feedback control method is developed to address the underlying problem. Conditions are derived to obtain the output-feedback controller and resilient asynchronous ETS such that the closed-loop switched fuzzy system is globally exponentially stable. Examples are provided to demonstrate the effectiveness and merits of the proposed new control design techniques.

摘要

本文针对基于网络的自动驾驶车辆系统的横向控制问题提出了一种新的解决方案。针对非线性自动驾驶车辆,在存在外部干扰和网络诱导问题(如网络攻击、时滞和有限带宽)的情况下,提出了一种新的解决方案,以实现平滑地跟随规划路径。首先,建立了一个基于模糊模型的系统来表示受到混合网络攻击的非线性网络车辆系统。为了减轻网络负担和网络攻击的影响,提出了一种异步弹性事件触发方案(ETS)。开发了一种动态输出反馈控制方法来解决这个问题。推导出了条件,以获得输出反馈控制器和弹性异步 ETS,从而使闭环切换模糊系统全局指数稳定。提供了示例来证明所提出的新控制设计技术的有效性和优点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验