IEEE Trans Cybern. 2023 May;53(5):2791-2804. doi: 10.1109/TCYB.2022.3153964. Epub 2023 Apr 21.
Distributed differential evolution (DDE) is an efficient paradigm that adopts multiple populations for cooperatively solving complex optimization problems. However, how to allocate fitness evaluation (FE) budget resources among the distributed multiple populations can greatly influence the optimization ability of DDE. Therefore, this article proposes a novel three-layer DDE framework with adaptive resource allocation (DDE-ARA), including the algorithm layer for evolving various differential evolution (DE) populations, the dispatch layer for dispatching the individuals in the DE populations to different distributed machines, and the machine layer for accommodating distributed computers. In the DDE-ARA framework, three novel methods are further proposed. First, a general performance indicator (GPI) method is proposed to measure the performance of different DEs. Second, based on the GPI, a FE allocation (FEA) method is proposed to adaptively allocate the FE budget resources from poorly performing DEs to well-performing DEs for better search efficiency. This way, the GPI and FEA methods achieve the ARA in the algorithm layer. Third, a load balance strategy is proposed in the dispatch layer to balance the FE burden of different computers in the machine layer for improving load balance and algorithm speedup. Moreover, theoretical analyses are provided to show why the proposed DDE-ARA framework can be effective and to discuss the lower bound of its optimization error. Extensive experiments are conducted on all the 30 functions of CEC 2014 competitions at 10, 30, 50, and 100 dimensions, and some state-of-the-art DDE algorithms are adopted for comparisons. The results show the great effectiveness and efficiency of the proposed framework and the three novel methods.
分布式差分进化(DDE)是一种有效的范例,它采用多个群体来协同解决复杂的优化问题。然而,如何在分布式多个群体之间分配适应度评估(FE)预算资源,会极大地影响 DDE 的优化能力。因此,本文提出了一种具有自适应资源分配(DDE-ARA)的新型三层 DDE 框架,包括用于进化各种差分进化(DE)群体的算法层、用于将 DE 群体中的个体分配到不同分布式机器的调度层以及容纳分布式计算机的机器层。在 DDE-ARA 框架中,进一步提出了三种新方法。首先,提出了一种通用性能指标(GPI)方法来衡量不同 DE 的性能。其次,基于 GPI,提出了一种 FE 分配(FEA)方法,自适应地将 FE 预算资源从表现不佳的 DE 分配给表现良好的 DE,以提高搜索效率。这样,GPI 和 FEA 方法在算法层实现了 ARA。第三,在调度层提出了一种负载平衡策略,以平衡机器层中不同计算机的 FE 负担,提高负载平衡和算法加速。此外,还提供了理论分析,以说明为什么所提出的 DDE-ARA 框架可以有效,并讨论其优化误差的下限。在 CEC 2014 竞赛的所有 30 个函数上进行了 10、30、50 和 100 维的扩展实验,并采用了一些最先进的 DDE 算法进行比较。结果表明,所提出的框架和三种新方法非常有效。