Suppr超能文献

用于多模态优化问题的自适应估计分布分布式差分进化算法

Adaptive Estimation Distribution Distributed Differential Evolution for Multimodal Optimization Problems.

作者信息

Wang Zi-Jia, Zhou Yu-Ren, Zhang Jun

出版信息

IEEE Trans Cybern. 2022 Jul;52(7):6059-6070. doi: 10.1109/TCYB.2020.3038694. Epub 2022 Jul 4.

Abstract

Multimodal optimization problems (MMOPs) require algorithms to locate multiple optima simultaneously. When using evolutionary algorithms (EAs) to deal with MMOPs, an intuitive idea is to divide the population into several small "niches," where different niches focus on locating different optima. These population partition strategies are called "niching" techniques, which have been frequently used for MMOPs. The algorithms for simultaneously locating multiple optima of MMOPs are called multimodal algorithms. However, many multimodal algorithms still face the difficulty of population partition since most of the niching techniques involve the sensitive niching parameters. Considering this issue, in this article, we propose a parameter-free niching method based on adaptive estimation distribution (AED) and develop a distributed differential evolution (DDE) algorithm, which is called AED-DDE, for solving MMOPs. In AED-DDE, each individual finds its own appropriate niche size to form a niche and acts as an independent unit to find a global optimum. Therefore, we can avoid the difficulty of population partition and the sensitivity of niching parameters. Different niches are co-evolved by using the master-slave multiniche distributed model. The multiniche co-evolution mechanism can improve the population diversity for fully exploring the search space and finding more global optima. Moreover, the AED-DDE algorithm is further enhanced by a probabilistic local search (PLS) to refine the solution accuracy. Compared with other multimodal algorithms, even the winner of CEC2015 multimodal competition, the comparison results fully demonstrate the superiority of AED-DDE.

摘要

多模态优化问题(MMOPs)要求算法同时定位多个最优解。当使用进化算法(EAs)来处理MMOPs时,一个直观的想法是将种群划分为几个小的“小生境”,不同的小生境专注于定位不同的最优解。这些种群划分策略被称为“小生境”技术,它们经常被用于MMOPs。用于同时定位MMOPs多个最优解的算法被称为多模态算法。然而,许多多模态算法仍然面临种群划分的困难,因为大多数小生境技术都涉及敏感的小生境参数。考虑到这个问题,在本文中,我们提出了一种基于自适应估计分布(AED)的无参数小生境方法,并开发了一种分布式差分进化(DDE)算法,称为AED-DDE,用于求解MMOPs。在AED-DDE中,每个个体找到自己合适的小生境大小以形成一个小生境,并作为一个独立单元来寻找全局最优解。因此,我们可以避免种群划分的困难和小生境参数的敏感性。不同的小生境通过主从多小生境分布式模型共同进化。多小生境共同进化机制可以提高种群多样性以充分探索搜索空间并找到更多的全局最优解。此外,AED-DDE算法通过概率局部搜索(PLS)进一步增强,以提高解的精度。与其他多模态算法相比,即使是CEC2015多模态竞赛的获胜者,比较结果也充分证明了AED-DDE的优越性。

相似文献

1
Adaptive Estimation Distribution Distributed Differential Evolution for Multimodal Optimization Problems.
IEEE Trans Cybern. 2022 Jul;52(7):6059-6070. doi: 10.1109/TCYB.2020.3038694. Epub 2022 Jul 4.
2
Optimizing Niche Center for Multimodal Optimization Problems.
IEEE Trans Cybern. 2023 Apr;53(4):2544-2557. doi: 10.1109/TCYB.2021.3125362. Epub 2023 Mar 16.
4
Local Binary Pattern-Based Adaptive Differential Evolution for Multimodal Optimization Problems.
IEEE Trans Cybern. 2020 Jul;50(7):3343-3357. doi: 10.1109/TCYB.2019.2927780. Epub 2019 Aug 8.
5
A Probabilistic Niching Evolutionary Computation Framework Based on Binary Space Partitioning.
IEEE Trans Cybern. 2022 Jan;52(1):51-64. doi: 10.1109/TCYB.2020.2972907. Epub 2022 Jan 11.
8
MOMMOP: multiobjective optimization for locating multiple optimal solutions of multimodal optimization problems.
IEEE Trans Cybern. 2015 Apr;45(4):830-43. doi: 10.1109/TCYB.2014.2337117. Epub 2014 Aug 1.
9
Learning Multimodal Parameters: A Bare-Bones Niching Differential Evolution Approach.
IEEE Trans Neural Netw Learn Syst. 2018 Jul;29(7):2944-2959. doi: 10.1109/TNNLS.2017.2708712. Epub 2017 Jun 20.
10
Adaptive Distributed Differential Evolution.
IEEE Trans Cybern. 2019 Oct 21. doi: 10.1109/TCYB.2019.2944873.

引用本文的文献

1
A Space Telescope Scheduling Approach Combining Observation Priority Coding with Problem Decomposition Strategies.
Biomimetics (Basel). 2024 Nov 21;9(12):718. doi: 10.3390/biomimetics9120718.
2
Adaptive Bi-Operator Evolution for Multitasking Optimization Problems.
Biomimetics (Basel). 2024 Oct 8;9(10):604. doi: 10.3390/biomimetics9100604.
3
Set Packing Optimization by Evolutionary Algorithms with Theoretical Guarantees.
Biomimetics (Basel). 2024 Sep 27;9(10):586. doi: 10.3390/biomimetics9100586.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验