Bentley Cameron L, Kang Minkyung, Bukola Saheed, Creager Stephen E, Unwin Patrick R
School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.
ACS Nano. 2022 Apr 26;16(4):5233-5245. doi: 10.1021/acsnano.1c05872. Epub 2022 Mar 14.
In 2014, it was reported that protons can traverse between aqueous phases separated by nominally pristine monolayer graphene and hexagonal boron nitride (h-BN) films (membranes) under ambient conditions. This intrinsic proton conductivity of the one-atom-thick crystals, with proposed through-plane conduction, challenged the notion that graphene is impermeable to atoms, ions, and molecules. More recent evidence points to a defect-facilitated transport mechanism, analogous to transport through conventional ion-selective membranes based on graphene and h-BN. Herein, local ion-flux imaging is performed on chemical vapor deposition (CVD) graphene|Nafion membranes using an "electrochemical ion (proton) pump cell" mode of scanning electrochemical cell microscopy (SECCM). Targeting regions that are free from visible macroscopic defects (, cracks, holes, ) and assessing hundreds to thousands of different sites across the graphene surfaces in a typical experiment, we find that most of the CVD graphene|Nafion membrane is impermeable to proton transport, with transmission typically occurring at ≈20-60 localized sites across a ≈0.003 mm area of the membrane (>5000 measurements total). When localized proton transport occurs, it can be a highly dynamic process, with additional transmission sites "opening" and a small number of sites "closing" under an applied electric field on the seconds time scale. Applying a simple equivalent circuit model of ion transport through a cylindrical nanopore, the local transmission sites are estimated to possess dimensions (radii) on the (sub)nanometer scale, implying that rare atomic defects are responsible for proton conductance. Overall, this work reinforces SECCM as a premier tool for the structure-property mapping of microscopically complex (electro)materials, with the local ion-flux mapping configuration introduced herein being widely applicable for functional membrane characterization and beyond, for example in diagnosing the failure mechanisms of protective surface coatings.
2014年,有报道称,在环境条件下,质子能够穿过由名义上纯净的单层石墨烯和六方氮化硼(h-BN)薄膜(膜)分隔的水相。这种单原子厚晶体的本征质子传导性,以及所提出的面内传导,对石墨烯对原子、离子和分子不可渗透的观念提出了挑战。最近的证据表明存在一种缺陷促进的传输机制,类似于通过基于石墨烯和h-BN的传统离子选择性膜的传输。在此,使用扫描电化学池显微镜(SECCM)的“电化学离子(质子)泵电池”模式,对化学气相沉积(CVD)石墨烯|Nafion膜进行局部离子通量成像。针对没有可见宏观缺陷(如裂缝、孔洞)的区域,并在典型实验中评估石墨烯表面上数百到数千个不同位点,我们发现大多数CVD石墨烯|Nafion膜对质子传输是不可渗透的,传输通常发生在膜的约0.003平方毫米面积上的约20 - 60个局部位点(总共>5000次测量)。当发生局部质子传输时,这可能是一个高度动态的过程,在施加的电场作用下,在秒时间尺度上会有额外的传输位点“打开”,少量位点“关闭”。应用通过圆柱形纳米孔的离子传输的简单等效电路模型,估计局部传输位点具有(亚)纳米尺度的尺寸(半径),这意味着罕见的原子缺陷是质子传导的原因。总体而言,这项工作强化了SECCM作为微观复杂(电)材料结构 - 性能映射的首要工具,本文引入的局部离子通量映射配置广泛适用于功能膜表征及其他领域,例如诊断保护性表面涂层的失效机制。