Suppr超能文献

通过引入原子级薄的化学气相沉积石墨烯克服现有质子交换燃料电池膜中的电导率与交叉渗透权衡问题。

Overcoming the Conductance versus Crossover Trade-off in State-of-the-Art Proton Exchange Fuel-Cell Membranes by Incorporating Atomically Thin Chemical Vapor Deposition Graphene.

作者信息

Moehring Nicole K, Mansoor Basha Abdul Bashith, Chaturvedi Pavan, Knight Thomas, Fan Xiaozong, Pintauro Peter N, Boutilier Michael S H, Karan Kunal, Kidambi Piran R

机构信息

Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, Tennessee 37235, United States.

Chemical and Biomolecular Engineering Department, Vanderbilt University, Nashville, Tennessee 37212, United States.

出版信息

Nano Lett. 2025 Jan 22;25(3):1165-1176. doi: 10.1021/acs.nanolett.4c05725. Epub 2025 Jan 13.

Abstract

Permeance-selectivity trade-offs are inherent to polymeric membranes. In fuel cells, thinner proton exchange membranes (PEMs) could enable higher proton conductance and increased power density with lower area-specific resistance (ASR), smaller ohmic losses, and lower ionomer cost. However, reducing thickness is accompanied by an increase in undesired species crossover harming performance and long-term efficiency. Here, we show that incorporating atomically thin monolayer graphene synthesized via scalable chemical vapor deposition (CVD) and tunable defect density into PEMs (Nafion, ∼5-25 μm thick) can allow for reduced H crossover (∼34-78% of Nafion of a similar thickness) while maintaining adequate areal proton conductance for applications (>4 S cm). In contrast to most prior work using >50 μm symmetric Nafion sandwich structures, we elucidate the interplay of graphene defect density and Nafion proton transport resistance on the performance of Nafion|graphene composite membranes and find high-quality low-defect density CVD graphene (G) supported on Nafion 211 (∼25 μm); i.e., N211|G has a high areal proton conductance (∼6.1 S cm) and the lowest H crossover (∼0.7 mA cm). Fully functional centimeter-scale N211|G fuel-cell membranes demonstrate performance comparable to that of state-of-the-art Nafion N211 at room temperature as well as standard operating conditions (∼80 °C, ∼150-250 kPa-abs) with H/air (power density ∼0.57-0.63 W cm) and H/O feed (power density ∼1.4-1.62 W cm) and markedly reduced H crossover (∼53-57%).

摘要

渗透选择性权衡是聚合物膜固有的特性。在燃料电池中,更薄的质子交换膜(PEM)能够实现更高的质子传导率,并通过降低面积比电阻(ASR)、减小欧姆损耗和降低离聚物成本来提高功率密度。然而,减小膜的厚度会伴随着不期望的物质渗透增加,从而损害电池性能和长期效率。在此,我们表明,将通过可扩展化学气相沉积(CVD)合成的具有可调缺陷密度的原子级薄单层石墨烯掺入PEM(厚度约为5 - 25μm的Nafion膜)中,可以减少氢气渗透(约为相同厚度Nafion膜的34 - 78%),同时保持适用于实际应用的面质子传导率(>4 S cm²)。与大多数使用厚度大于50μm的对称Nafion三明治结构的先前工作不同,我们阐明了石墨烯缺陷密度与Nafion质子传输电阻对Nafion|石墨烯复合膜性能的相互作用,并发现支撑在Nafion 211(约25μm)上的高质量、低缺陷密度的CVD石墨烯(G);即,N211|G具有高面质子传导率(约6.1 S cm²)和最低的氢气渗透(约0.7 mA cm²)。全功能厘米级N211|G燃料电池膜在室温以及标准操作条件(约80°C,约150 - 250 kPa绝对压力)下,使用氢气/空气(功率密度约0.57 - 0.63 W cm²)和氢气/氧气进料(功率密度约1.4 - 1.62 W cm²)时,表现出与最先进的Nafion N211相当的性能,并且氢气渗透显著降低(约53 - 57%)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c9b/11760178/c07da7bc6d94/nl4c05725_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验