Suppr超能文献

二维晶格中埃级孔隙率的动力学控制用于直接可扩展合成原子级薄质子交换膜

Kinetic Control of Angstrom-Scale Porosity in 2D Lattices for Direct Scalable Synthesis of Atomically Thin Proton Exchange Membranes.

作者信息

Moehring Nicole K, Chaturvedi Pavan, Cheng Peifu, Ko Wonhee, Li An-Ping, Boutilier Michael S H, Kidambi Piran R

机构信息

Interdisciplinary Graduate Program in Materials Science, Vanderbilt University, Nashville, Tennessee37235, United States.

Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee37212, United States.

出版信息

ACS Nano. 2022 Oct 25;16(10):16003-16018. doi: 10.1021/acsnano.2c03730. Epub 2022 Oct 6.

Abstract

Angstrom-scale pores introduced into atomically thin 2D materials offer transformative advances for proton exchange membranes in several energy applications. Here, we show that facile kinetic control of scalable chemical vapor deposition (CVD) can allow for direct formation of angstrom-scale proton-selective pores in monolayer graphene with significant hindrance to even small, hydrated ions (K diameter ∼6.6 Å) and gas molecules (H kinetic diameter ∼2.9 Å). We demonstrate centimeter-scale Nafion|Graphene|Nafion membranes with proton conductance ∼3.3-3.8 S cm (graphene ∼12.7-24.6 S cm) and H/K selectivity ∼6.2-44.2 with liquid electrolytes. The same membranes show proton conductance ∼4.6-4.8 S cm (graphene ∼39.9-57.5 S cm) and extremely low H crossover ∼1.7 × 10 - 2.2 × 10 mA cm (∼0.4 V, ∼25 °C) with H gas feed. We rationalize our findings via a resistance-based transport model and introduce a stacking approach that leverages combinatorial effects of interdefect distance and interlayer transport to allow for Nafion|Graphene|Graphene|Nafion membranes with H/K selectivity ∼86.1 (at 1 M) and record low H crossover current density ∼2.5 × 10 mA cm, up to ∼90% lower than state-of-the-art ionomer Nafion membranes ∼2.7 × 10 mA cm under identical conditions, while still maintaining proton conductance ∼4.2 S cm (graphene stack ∼20.8 S cm) comparable to that for Nafion of ∼5.2 S cm. Our experimental insights enable functional atomically thin high flux proton exchange membranes with minimal crossover.

摘要

引入到原子级薄二维材料中的埃尺度孔隙在多种能源应用中为质子交换膜带来了变革性进展。在此,我们表明,对可扩展化学气相沉积(CVD)进行简便的动力学控制能够在单层石墨烯中直接形成埃尺度的质子选择性孔隙,对甚至小的水合离子(K直径约6.6 Å)和气体分子(H动力学直径约2.9 Å)都有显著阻碍。我们展示了厘米级的Nafion|石墨烯|Nafion膜,其质子传导率约为3.3 - 3.8 S/cm(石墨烯约为12.7 - 24.6 S/cm),在液体电解质中H/K选择性约为6.2 - 44.2。相同的膜在通入氢气时,质子传导率约为4.6 - 4.8 S/cm(石墨烯约为39.9 - 57.5 S/cm),氢气渗透率极低,约为1.7×10 - 2.2×10 mA/cm²(约0.4 V,约25 °C)。我们通过基于电阻的传输模型对研究结果进行了合理解释,并引入了一种堆叠方法,该方法利用缺陷间距离和层间传输的组合效应,使得Nafion|石墨烯|石墨烯|Nafion膜的H/K选择性约为86.1(在1 M时),并记录到低至约2.5×10 mA/cm²的氢气渗透电流密度,在相同条件下比最先进的离聚物Nafion膜约2.7×10 mA/cm²低达约90%,同时仍保持约4.2 S/cm的质子传导率(石墨烯堆叠约为20.8 S/cm),与约5.2 S/cm的Nafion相当。我们的实验见解实现了具有最小渗透的功能性原子级薄高通量质子交换膜。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验