Fischer Eric W, Werther Michael, Bouakline Foudhil, Saalfrank Peter
Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany.
Institut für Theoretische Physik, Technische Universität Dresden, D-01062 Dresden, Germany.
J Chem Phys. 2020 Aug 14;153(6):064704. doi: 10.1063/5.0017716.
We discuss an efficient Hierarchical Effective Mode (HEM) representation of a high-dimensional harmonic oscillator bath, which describes phonon-driven vibrational relaxation of an adsorbate-surface system, namely, deuterium adsorbed on Si(100). Starting from the original Hamiltonian of the adsorbate-surface system, the HEM representation is constructed via iterative orthogonal transformations, which are efficiently implemented with Householder matrices. The detailed description of the HEM representation and its construction are given in the second quantization representation. The hierarchical nature of this representation allows access to the exact quantum dynamics of the adsorbate-surface system over finite time intervals, controllable via the truncation order of the hierarchy. To study the convergence properties of the effective mode representation, we solve the time-dependent Schrödinger equation of the truncated system-bath HEM Hamiltonian, with the help of the multilayer extension of the Multiconfigurational Time-Dependent Hartree (ML-MCTDH) method. The results of the HEM representation are compared with those obtained with a quantum-mechanical tier-model. The convergence of the HEM representation with respect to the truncation order of the hierarchy is discussed for different initial conditions of the adsorbate-surface system. The combination of the HEM representation with the ML-MCTDH method provides information on the time evolution of the system (adsorbate) and multiple effective modes of the bath (surface). This permits insight into mechanisms of vibration-phonon coupling of the adsorbate-surface system, as well as inter-mode couplings of the effective bath.
我们讨论了一种高维谐振子浴的高效分层有效模式(HEM)表示,它描述了吸附质 - 表面系统(即吸附在Si(100)上的氘)的声子驱动振动弛豫。从吸附质 - 表面系统的原始哈密顿量出发,通过迭代正交变换构建HEM表示,这些变换利用豪斯霍尔德矩阵有效地实现。HEM表示及其构建的详细描述在二次量子化表示中给出。这种表示的分层性质允许在有限时间间隔内访问吸附质 - 表面系统的精确量子动力学,可通过分层的截断阶数进行控制。为了研究有效模式表示的收敛性质,我们借助多组态含时哈特里(ML-MCTDH)方法的多层扩展,求解截断系统 - 浴HEM哈密顿量的含时薛定谔方程。将HEM表示的结果与用量子力学层级模型获得的结果进行比较。针对吸附质 - 表面系统的不同初始条件,讨论了HEM表示相对于分层截断阶数的收敛情况。HEM表示与ML-MCTDH方法的结合提供了关于系统(吸附质)的时间演化以及浴(表面)的多个有效模式的信息。这有助于深入了解吸附质 - 表面系统的振动 - 声子耦合机制以及有效浴的模式间耦合。