Darmani Kuhi Hassan, Hossein-Zadeh Navid Ghavi, France James, López Secundino
Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
Department of Animal Biosciences, Centre for Nutrition Modelling, University of Guelph, GuelphON, N1G 2W1, Canada.
J Dairy Res. 2022 Mar 15:1-4. doi: 10.1017/S0022029922000255.
This research communication reports a study to model the growth curves for withers height (WH) and body weight (BW) to withers height ratio (BW:WH) using monthly records (from 1 to 24 months of age) for three breeds of dairy heifer (Holstein, Jersey and Brown Swiss). The data sets used were those reported by the Dairy Heifer Evaluation Project of Penn State Extension (USA) between 1991 and 1992. Four growth functions (monomolecular and Michaelis-Menten, both with diminishing returns behaviour, and Schumacher and López, both with asymptotic sigmoidal behaviour) were fitted using the non-linear regression procedure of the SigmaPlot software and the parameters estimated. The models were judged for goodness of fit using adjusted coefficient of determination ($R_{{\rm adj}}^2 $), root mean square error (RMSE), Akaike's information criterion (AIC) and Bayesian information criterion (BIC). Assessing the goodness of fit by $R_{{\rm adj}}^2 $ (>0.99 in all cases) reveals the generally appropriate fit of the models to the data. The non-sigmoidal functions (i.e. Michaelis-Menten and monomolecular) provided the best fits giving the lowest values of RMSE, AIC and BIC. Based on the chosen statistical criteria, the Schumacher and López equations provided acceptable fits to the WH and BW:WH growth curves, but showed points of inflexion at times before birth, indicating that these growth curves are not sigmoidal. In conclusion, evaluation of the different non-linear growth functions used in this study indicated their potential for modelling growth patterns in dairy heifers.
本研究通讯报告了一项研究,该研究利用三个奶牛品种(荷斯坦、泽西和瑞士褐牛)从1月龄到24月龄的月度记录,对体高(WH)和体重(BW)与体高比(BW:WH)的生长曲线进行建模。所使用的数据集是美国宾夕法尼亚州立大学推广部奶牛评估项目在1991年至1992年间报告的数据集。使用SigmaPlot软件的非线性回归程序拟合了四个生长函数(单分子函数和米氏函数,二者均具有收益递减行为;舒马赫函数和洛佩斯函数,二者均具有渐近S形行为)并估计了参数。使用调整后的决定系数($R_{{\rm adj}}^2 $)、均方根误差(RMSE)、赤池信息准则(AIC)和贝叶斯信息准则(BIC)对模型的拟合优度进行评判。通过$R_{{\rm adj}}^2 $评估拟合优度(在所有情况下均>0.99)表明模型总体上与数据拟合良好。非S形函数(即米氏函数和单分子函数)拟合效果最佳,RMSE、AIC和BIC值最低。基于所选的统计标准,舒马赫方程和洛佩斯方程对体高和BW:WH生长曲线的拟合可以接受,但在出生前就出现了拐点,这表明这些生长曲线不是S形的。总之,对本研究中使用的不同非线性生长函数的评估表明了它们在模拟奶牛生长模式方面的潜力。