Xu Xijun, Li Fangkun, Zhang Dechao, Liu Zhengbo, Zuo Shiyong, Zeng Zhiyuan, Liu Jun
School of Chemistry and Chemical Engineering and School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou, 510641, China.
Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China.
Adv Sci (Weinh). 2022 May;9(14):e2200247. doi: 10.1002/advs.202200247. Epub 2022 Mar 15.
Secondary batteries have been widespread in the daily life causing an ever-growing demand for long-cycle lifespan and high-energy alkali-ion batteries. As an essential constituent part, electrode materials with superior electrochemical properties play a vital role in the battery systems. Here, an outstanding electrode of yolk-shell ZnS@C nanorods is developed, introducing considerable void space via a self-sacrificial template method. Such carbon encapsulated nanorods moderate integral electronic conductivity, thus ensuring rapid alkali-ions/electrons transporting. Furthermore, the porous structure of these nanorods endows enough void space to mitigate volume stress caused by the insertion/extraction of alkali-ions. Due to the unique structure, these yolk-shell ZnS@C nanorods achieve superior rate performance and cycling performance (740 mAh g at 1.0 A g after 540 cycles) for lithium-ion batteries. As a potassium-ion batteries anode, they achieve an ultra-long lifespan delivering 211.1 mAh g at 1.0 A g after 5700 cycles. The kinetic analysis reveals that these ZnS@C nanorods with considerable pseudocapacitive contribution benefit the fast lithiation/delithiation. Detailed transmission electron microscopy (TEM) and X-ray diffraction (XRD) analyses indicate that such yolk-shell ZnS@C anode is a typical reversible conversion reaction mechanism accomplished by alloying processes. This rational design strategy opens a window for the development of superior energy storage materials.
二次电池在日常生活中已广泛应用,这使得对长循环寿命和高能量碱离子电池的需求不断增长。作为重要组成部分,具有优异电化学性能的电极材料在电池系统中起着至关重要的作用。在此,通过自牺牲模板法开发了一种出色的蛋黄壳结构ZnS@C纳米棒电极,引入了大量的空隙空间。这种碳包覆的纳米棒可调节整体电子导电性,从而确保碱离子/电子的快速传输。此外,这些纳米棒的多孔结构提供了足够的空隙空间,以减轻碱离子嵌入/脱出所引起的体积应力。由于其独特的结构,这些蛋黄壳结构的ZnS@C纳米棒在锂离子电池中具有优异的倍率性能和循环性能(在540次循环后,1.0 A g下为740 mAh g)。作为钾离子电池阳极,它们在5700次循环后,1.0 A g下实现了211.1 mAh g的超长寿命。动力学分析表明,这些具有可观赝电容贡献的ZnS@C纳米棒有利于快速的锂化/脱锂过程。详细的透射电子显微镜(TEM)和X射线衍射(XRD)分析表明,这种蛋黄壳结构的ZnS@C阳极是一种通过合金化过程实现的典型可逆转换反应机制。这种合理的设计策略为开发优异的储能材料打开了一扇窗口。