Suppr超能文献

将纳米金刚石整合到神经酰胺体中作为新兴有效的中枢神经系统疾病基因治疗纳米平台。

Nanodiamond Integration into Niosomes as an Emerging and Efficient Gene Therapy Nanoplatform for Central Nervous System Diseases.

机构信息

NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.

Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain.

出版信息

ACS Appl Mater Interfaces. 2022 Mar 23;14(11):13665-13677. doi: 10.1021/acsami.2c02182. Epub 2022 Mar 15.

Abstract

Nanodiamonds (NDs) are promising materials for gene delivery because of their unique physicochemical and biological features, along with their possibility of combination with other nonviral systems. Our aim was to evaluate the biophysical performance of NDs as helper components of niosomes, named nanodiasomes, to address a potential nonviral gene delivery nanoplatform for therapeutic applications in central nervous system (CNS) diseases. Nanodiasomes, niosomes, and their corresponding complexes, obtained after genetic material addition at different ratios (w/w), were evaluated in terms of physicochemical properties, cellular uptake, intracellular disposition, biocompatibility, and transfection efficiency in HEK-293 cells. Nanodiasomes, niosomes, and complexes fulfilled the physicochemical features for gene therapy applications. Biologically, the incorporation of NDs into niosomes enhanced 75% transfection efficiency ( < 0.001) and biocompatibility ( < 0.05) to values over 90%, accompanied by a higher cellular uptake ( < 0.05). Intracellular trafficking analysis showed higher endocytosis via clathrins ( < 0.05) in nanodiaplexes compared with nioplexes, followed by higher lysosomal colocalization ( < 0.05), that coexisted with endosomal escape properties, whereas endocytosis mediated by caveolae was the most efficient pathway in the case of nanodiaplexes. Moreover, studies in CNS primary cells revealed that nanodiaplexes successfully transfected neuronal and retinal cells. This proof-of-concept study points out that ND integration into niosomes represents an encouraging nonviral nanoplatform strategy for the treatment of CNS diseases by gene therapy.

摘要

纳米金刚石(NDs)由于其独特的物理化学和生物学特性,以及与其他非病毒系统结合的可能性,是基因传递的有前途的材料。我们的目的是评估 NDs 作为非诺咪体(niosomes)的辅助成分的生物物理性能,将其命名为纳米二联体(nanodiasomes),以解决潜在的用于治疗中枢神经系统(CNS)疾病的非病毒基因传递纳米平台。纳米二联体、非诺咪体及其在不同比例(w/w)下添加遗传物质后获得的相应复合物,在物理化学性质、细胞摄取、细胞内分布、生物相容性和 HEK-293 细胞中的转染效率等方面进行了评估。纳米二联体、非诺咪体及其复合物满足基因治疗应用的物理化学特性。从生物学角度来看,将 NDs 掺入非诺咪体可将转染效率(<0.001)和生物相容性(<0.05)提高 75%,达到 90%以上,同时细胞摄取率也更高(<0.05)。细胞内转运分析表明,与 nioplexes 相比,纳米二联体通过网格蛋白介导的内吞作用具有更高的内吞作用(<0.05),随后溶酶体共定位更高(<0.05),同时存在内体逃逸特性,而 caveolae 介导的内吞作用是纳米二联体最有效的途径。此外,在中枢神经系统原代细胞中的研究表明,纳米二联体成功转染了神经元和视网膜细胞。这项概念验证研究表明,ND 整合到非诺咪体中代表了一种有前途的非病毒纳米平台策略,可通过基因治疗治疗中枢神经系统疾病。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a23e/8949757/4f5f3af95db0/am2c02182_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验