Center for Health Promotion and Health Equity, Brown University School of Public Health, Providence, Rhode Island, USA.
Department of Behavioral and Social Sciences, Brown University School of Public Health, Providence, Rhode Island, USA.
LGBT Health. 2022 May-Jun;9(4):254-263. doi: 10.1089/lgbt.2021.0433. Epub 2022 Mar 15.
Prior algorithms enabled the identification and gender categorization of transgender people in insurance claims databases in which sex and gender are not simultaneously captured. However, these methods have been unable to categorize the gender of a large proportion of their samples. We improve upon these methods to identify the gender of a larger proportion of transgender people in insurance claims data. Using 2001-2019 Optum's Clinformatics Data Mart insurance claims data, we adapted prior algorithms by combining diagnosis, procedure, and pharmacy claims to (1) identify a transgender sample; and (2) stratify the sample by gender category (trans feminine and nonbinary [TFN], trans masculine and nonbinary [TMN], unclassified). We used logistic regression to estimate the burden of 13 chronic health conditions, controlling for gender category, age, race/ethnicity, enrollment length, and census region. We identified 38,598 unique transgender people, comprising 50% [ = 19,252] TMN, 26% ( = 10,040) TFN, and 24% ( = 9306) unclassified individuals. In adjusted models, relative to TMN people, TFN people had significantly higher odds of most chronic health conditions, including HIV, atherosclerotic cardiovascular disorder, myocardial infarction, alcohol use disorder, and drug use disorder. Notably, TMN individuals had significantly higher odds of post-traumatic stress disorder and depression than TFN individuals. By combining complex administrative claims-based algorithms, we identified the largest U.S.-based sample of transgender individuals and inferred the gender of >75% of the sample. Adjusted models extend prior research documenting key health disparities by gender category. These methods may enable researchers to explore rare and sex-specific conditions in hard-to-reach transgender populations.
先前的算法能够在仅捕获性别而不捕获性别认同的保险索赔数据库中识别和对跨性别者进行性别分类。然而,这些方法无法对其大部分样本的性别进行分类。我们改进了这些方法,以提高在保险索赔数据中识别更多跨性别者的比例。我们使用 2001-2019 年 Optum 的 Clinformatics Data Mart 保险索赔数据,通过结合诊断、手术和药剂处方来改进先前的算法,以(1)识别跨性别者样本;(2)按性别类别(跨性别女性和非二元性别 [TFN]、跨性别男性和非二元性别 [TMN]、未分类)对样本进行分层。我们使用逻辑回归来估计 13 种慢性健康状况的负担,同时控制性别类别、年龄、种族/民族、入组时间和人口普查区域。我们确定了 38598 名独特的跨性别者,其中 50%( = 19252)为 TMN,26%( = 10040)为 TFN,24%( = 9306)为未分类。在调整后的模型中,与 TMN 人群相比,TFN 人群大多数慢性健康状况的患病风险显著更高,包括艾滋病毒、动脉粥样硬化性心血管疾病、心肌梗死、酒精使用障碍和药物使用障碍。值得注意的是,与 TFN 人群相比,TMN 人群患创伤后应激障碍和抑郁症的风险显著更高。通过结合复杂的基于行政索赔的算法,我们确定了美国最大的跨性别者样本,并推断了超过 75%的样本的性别。调整后的模型扩展了先前研究,记录了按性别类别划分的关键健康差异。这些方法可能使研究人员能够在难以接触到的跨性别人群中探索罕见和特定于性别的疾病。