Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.
Structure. 2022 May 5;30(5):777-786.e3. doi: 10.1016/j.str.2022.02.014. Epub 2022 Mar 14.
Influenza viruses pose severe public health threats globally. Influenza viruses are extensively pleomorphic, in shape, size, and organization of viral proteins. Analysis of influenza morphology and ultrastructure can help elucidate viral structure-function relationships and aid in therapeutics and vaccine development. While cryo-electron tomography (cryoET) can depict the 3D organization of pleomorphic influenza, the low signal-to-noise ratio inherent to cryoET and viral heterogeneity have precluded detailed characterization of influenza viruses. In this report, we leveraged convolutional neural networks and cryoET to characterize the morphological architecture of the A/Puerto Rico/8/34 (H1N1) influenza strain. Our pipeline improved the throughput of cryoET analysis and accurately identified viral components within tomograms. Using this approach, we successfully characterized influenza morphology, glycoprotein density, and conducted subtomogram averaging of influenza glycoproteins. Application of this processing pipeline can aid in the structural characterization of not only influenza viruses, but other pleomorphic viruses and infected cells.
流感病毒对全球公共卫生构成严重威胁。流感病毒在形状、大小和病毒蛋白的组织方面具有广泛的多形性。分析流感的形态和超微结构有助于阐明病毒的结构-功能关系,并有助于治疗和疫苗的开发。虽然冷冻电镜断层扫描(cryoET)可以描绘多形性流感的 3D 结构,但 cryoET 固有的低信噪比和病毒异质性使得详细描述流感病毒变得困难。在本报告中,我们利用卷积神经网络和 cryoET 来描述 A/Puerto Rico/8/34(H1N1)流感株的形态结构。我们的流程提高了 cryoET 分析的通量,并在断层扫描中准确识别了病毒成分。使用这种方法,我们成功地描述了流感形态、糖蛋白密度,并对流感糖蛋白进行了亚断层扫描平均。该处理流程的应用不仅有助于流感病毒的结构特征描述,也有助于其他多形性病毒和感染细胞的结构特征描述。