Suppr超能文献

中空铁酸铁/磷化铁@碳球中的异质界面用于增强锂存储性能

Heterogeneous interface in hollow ferroferric oxide/ iron phosphide@carbon spheres towards enhanced Li storage.

作者信息

Yan Zhaoqian, Sun Zhihao, Liu Hongshou, Guo Zihao, Wang Peng, Zhao Lanling, Qian Lei, Wu Xing-Long

机构信息

Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, 17923 Jingshi Road, Jinan 250061, China.

School of Physics, Shandong University, Jinan 250100, China.

出版信息

J Colloid Interface Sci. 2022 Jul;617:442-453. doi: 10.1016/j.jcis.2022.03.030. Epub 2022 Mar 8.

Abstract

Heterogeneous interface and structural engineering play important roles for electrochemical performance of lithium-ion batteries. Herein, heterostructures of hollow FeO/FeP spheres coated with carbon shell (H-FeO/FeP@C) are designed to enhance lithium storage performance. As bifunctional anode materials, the H-FeO/FeP@C spheres show the good rate performance with 458.4 mAh g at 5 A g and long-cyclic performance (630.2 mAh g at 2.0 A g after 1000 cycles). Density functional theory calculations demonstrate that the heterogeneous interfaces from (311) plane of FeO and (002) plane of FeP possess high charge density and distinct metallic character, which can improve the conductivity, increase the adsorption energy, provide more active sites and reduce the transfer barrier of ions and electrons. Besides, hollow structure of H-FeO/FeP@C not only alleviates the volume expansion during lithiation/delithiation process but also shortens the diffusion distance of Li ions. In addition, the ex-situ X-ray diffraction and X-ray photoelectron spectroscopy are used to reveal the electrochemical Li storage mechanisms of H-FeO/FeP@C. This work provides a novel route for design and preparation of Fe-based heterostructures for various energy storage systems in the future.

摘要

异质界面和结构工程对锂离子电池的电化学性能起着重要作用。在此,设计了包覆碳壳的中空FeO/FeP球异质结构(H-FeO/FeP@C)以提高锂存储性能。作为双功能负极材料,H-FeO/FeP@C球在5 A g时表现出458.4 mAh g的良好倍率性能和长循环性能(1000次循环后在2.0 A g时为630.2 mAh g)。密度泛函理论计算表明,FeO的(311)面与FeP的(002)面形成的异质界面具有高电荷密度和独特的金属特性,这可以提高电导率、增加吸附能、提供更多活性位点并降低离子和电子的传输势垒。此外,H-FeO/FeP@C的中空结构不仅减轻了锂化/脱锂过程中的体积膨胀,还缩短了锂离子的扩散距离。此外,采用非原位X射线衍射和X射线光电子能谱来揭示H-FeO/FeP@C的电化学锂存储机制。这项工作为未来各种储能系统中铁基异质结构的设计和制备提供了一条新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验