Suppr超能文献

模糊-黑猩猩优化算法:一种使用人工神经网络进行海洋哺乳动物分类的改进黑猩猩优化算法。

Fuzzy-ChOA: an improved chimp optimization algorithm for marine mammal classification using artificial neural network.

作者信息

Saffari Abbas, Khishe Mohammad, Zahiri Seyed-Hamid

机构信息

Department of Electrical Engineering, University of Birjand, Birjand, Iran.

Department of Marine Electronics and Communication Engineering, Imam Khomeini Marine Science University of Nowshahr, Nowshahr, Iran.

出版信息

Analog Integr Circuits Signal Process. 2022;111(3):403-417. doi: 10.1007/s10470-022-02014-1. Epub 2022 Mar 10.

Abstract

Chimp optimization algorithm (ChOA) is a robust nature-inspired technique, which was recently proposed for addressing real-world challenging engineering problems. Due to the novelty of the ChOA, there is room for its improvement. Recognition and classification of marine mammals using artificial neural networks (ANNs) are high-dimensional challenging problems. In order to address this problem, this paper proposed the using of ChOA as ANN's trainer. However, evolving ANNs using metaheuristic algorithms suffers from high complexity and processing time. In order to address this shortcoming, this paper proposes the fuzzy logic to adjust the ChOA's control parameters (Fuzzy-ChOA) for tuning the relationship between exploration and exploitation phases. In this regard, we collect underwater marine mammals sounds and then produce an experimental dataset. After pre-processing and feature extraction, the ANN is used as a classifier. Besides, for having a fair comparison, we used a benchmark audio database of marine mammals. The comparison algorithms include ChOA, coronavirus optimization algorithm, harris hawks optimization, black widow optimization algorithm, Kalman filter benchmark algorithms, and also comparative benchmarks include convergence speed, local optimal avoidance ability, classification rate, and receiver operating characteristics (ROC). The simulation results show that the proposed fuzzy model can tune the boundary between the exploration and extraction phases. The convergence curve and ROC confirm that the convergence rate and performance of the designed recognizer are better than benchmark algorithms.

摘要

黑猩猩优化算法(ChOA)是一种强大的受自然启发的技术,它最近被提出用于解决现实世界中具有挑战性的工程问题。由于ChOA的新颖性,它仍有改进的空间。使用人工神经网络(ANN)对海洋哺乳动物进行识别和分类是高维挑战性问题。为了解决这个问题,本文提出使用ChOA作为ANN的训练器。然而,使用元启发式算法进化ANN存在高复杂性和处理时间长的问题。为了解决这一缺点,本文提出使用模糊逻辑来调整ChOA的控制参数(模糊ChOA),以调整探索和利用阶段之间的关系。在这方面,我们收集水下海洋哺乳动物声音,然后生成一个实验数据集。经过预处理和特征提取后,将ANN用作分类器。此外,为了进行公平比较,我们使用了一个海洋哺乳动物基准音频数据库。比较算法包括ChOA、冠状病毒优化算法、哈里斯鹰优化算法、黑寡妇优化算法、卡尔曼滤波器基准算法,比较基准还包括收敛速度、局部最优避免能力分类率和接收器操作特性(ROC)。仿真结果表明,所提出的模糊模型可以调整探索和提取阶段之间的边界。收敛曲线和ROC证实,所设计识别器的收敛速度和性能优于基准算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/43eb/8912427/c09f8eb4e1ae/10470_2022_2014_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验