Suppr超能文献

用于特征选择的社会协同进化与正弦混沌对立学习黑猩猩优化算法

Social coevolution and Sine chaotic opposition learning Chimp Optimization Algorithm for feature selection.

作者信息

Zhang Li, Chen XiaoBo

机构信息

College of Computer Engineering, Jiangsu University of Technology, Changzhou, 213001, People's Republic of China.

Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012, People's Republic of China.

出版信息

Sci Rep. 2024 Jul 4;14(1):15413. doi: 10.1038/s41598-024-66285-6.

Abstract

Feature selection is a hot problem in machine learning. Swarm intelligence algorithms play an essential role in feature selection due to their excellent optimisation ability. The Chimp Optimisation Algorithm (CHoA) is a new type of swarm intelligence algorithm. It has quickly won widespread attention in the academic community due to its fast convergence speed and easy implementation. However, CHoA has specific challenges in balancing local and global search, limiting its optimisation accuracy and leading to premature convergence, thus affecting the algorithm's performance on feature selection tasks. This study proposes Social coevolution and Sine chaotic opposition learning Chimp Optimization Algorithm (SOSCHoA). SOSCHoA enhances inter-population interaction through social coevolution, improving local search. Additionally, it introduces sine chaotic opposition learning to increase population diversity and prevent local optima. Extensive experiments on 12 high-dimensional classification datasets demonstrate that SOSCHoA outperforms existing algorithms in classification accuracy, convergence, and stability. Although SOSCHoA shows advantages in handling high-dimensional datasets, there is room for future research and optimization, particularly concerning feature dimensionality reduction.

摘要

特征选择是机器学习中的一个热门问题。群体智能算法因其出色的优化能力在特征选择中发挥着重要作用。黑猩猩优化算法(CHoA)是一种新型的群体智能算法。它因其收敛速度快和易于实现而迅速在学术界赢得了广泛关注。然而,CHoA在平衡局部搜索和全局搜索方面存在特定挑战,限制了其优化精度并导致早熟收敛,从而影响了该算法在特征选择任务上的性能。本研究提出了社会协同进化与正弦混沌反向学习黑猩猩优化算法(SOSCHoA)。SOSCHoA通过社会协同进化增强种群间的交互作用,改善局部搜索。此外,它引入正弦混沌反向学习以增加种群多样性并防止局部最优。在12个高维分类数据集上进行的大量实验表明,SOSCHoA在分类准确率、收敛性和稳定性方面优于现有算法。尽管SOSCHoA在处理高维数据集方面显示出优势,但未来仍有研究和优化的空间,特别是在特征降维方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3c90/11224333/889dd8016d2b/41598_2024_66285_Figa_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验