Suppr超能文献

CSCAHHO:基于正弦余弦算法和哈里斯鹰优化算法的混沌混合算法求解全局优化问题。

CSCAHHO: Chaotic hybridization algorithm of the Sine Cosine with Harris Hawk optimization algorithms for solving global optimization problems.

机构信息

School of Electronics and Information Engineering, Jingchu University of Technology, Jingmen, China.

Academy of Arts, Jingchu University of Technology, Jingmen, China.

出版信息

PLoS One. 2022 May 19;17(5):e0263387. doi: 10.1371/journal.pone.0263387. eCollection 2022.

Abstract

Because of the No Free Lunch (NFL) rule, we are still under the way developing new algorithms and improving the capabilities of the existed algorithms. Under consideration of the simple and steady convergence capability of the sine cosine algorithm (SCA) and the fast convergence rate of the Harris Hawk optimization (HHO) algorithms, we hereby propose a new hybridization algorithm of the SCA and HHO algorithm in this paper, called the CSCAHHO algorithm henceforth. The energy parameter is introduced to balance the exploration and exploitation procedure for individuals in the new swarm, and chaos is introduced to improve the randomness. Updating equations is redefined and combined of the equations in the SCA and HHO algorithms. Simulation experiments on 27 benchmark functions and CEC 2014 competitive functions, together with 3 engineering problems are carried out. Comparisons have been made with the original SCA, HHO, Archimedes optimization algorithm (AOA), Seagull optimization algorithm (SOA), Sooty Tern optimization algorithm (STOA), Arithmetic optimizer (AO) and Chimp optimization algorithm (ChOA). Simulation experiments on either unimodal or multimodal, benchmark or CEC2014 functions, or real engineering problems all verified the better performance of the proposed CSAHHO, such as faster convergence rate, low residual errors, and steadier capability. Matlab code of this algorithm is shared in Gitee with the following address: https://gitee.com/yuj-zhang/cscahho.

摘要

由于没有免费的午餐(NFL)规则,我们仍在开发新算法并提高现有算法的能力。考虑到正弦余弦算法(SCA)的简单和稳定收敛能力以及哈里斯鹰优化(HHO)算法的快速收敛速度,我们在此提出了一种新的 SCA 和 HHO 算法的混合算法,称为 CSCAHHO 算法。引入能量参数来平衡新群体中个体的探索和开发过程,并引入混沌来提高随机性。重新定义了更新方程,并结合了 SCA 和 HHO 算法中的方程。在 27 个基准函数和 CEC 2014 竞争函数上进行了仿真实验,并进行了 3 个工程问题的实验。与原始 SCA、HHO、阿基米德优化算法(AOA)、海鸥优化算法(SOA)、乌燕鸥优化算法(STOA)、算术优化器(AO)和黑猩猩优化算法(ChOA)进行了比较。无论是单峰还是多峰、基准还是 CEC2014 函数,还是实际工程问题的仿真实验都验证了所提出的 CSAHHO 的更好性能,例如更快的收敛速度、更低的残余误差和更稳定的性能。该算法的 Matlab 代码已在 Gitee 上共享,地址为:https://gitee.com/yuj-zhang/cscahho。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e2c4/9119509/47d38b07c4b0/pone.0263387.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验