Genetics Department, University of Georgia, Athens, GA 30602, USA.
Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA.
G3 (Bethesda). 2022 Apr 4;12(4). doi: 10.1093/g3journal/jkac050.
Neurospora crassa propagates through dissemination of conidia, which develop through specialized structures called conidiophores. Recent work has identified striking variation in conidiophore morphology, using a wild population collection from Louisiana, United States of America to classify 3 distinct phenotypes: Wild-Type, Wrap, and Bulky. Little is known about the impact of these phenotypes on sporulation or germination later in the N. crassa life cycle, or about the genetic variation that underlies them. In this study, we show that conidiophore morphology likely affects colonization capacity of wild N. crassa isolates through both sporulation distance and germination on different carbon sources. We generated and crossed homokaryotic strains belonging to each phenotypic group to more robustly fit a model for and estimate heritability of the complex trait, conidiophore architecture. Our fitted model suggests at least 3 genes and 2 epistatic interactions contribute to conidiophore phenotype, which has an estimated heritability of 0.47. To uncover genes contributing to these phenotypes, we performed RNA-sequencing on mycelia and conidiophores of strains representing each of the 3 phenotypes. Our results show that the Bulky strain had a distinct transcriptional profile from that of Wild-Type and Wrap, exhibiting differential expression patterns in clock-controlled genes (ccgs), the conidiation-specific gene con-6, and genes implicated in metabolism and communication. Combined, these results present novel ecological impacts of and differential gene expression underlying natural conidiophore morphological variation, a complex trait that has not yet been thoroughly explored.
粗糙脉孢菌通过分生孢子的传播进行繁殖,这些分生孢子通过称为分生孢子梗的特殊结构发育。最近的研究使用来自美国路易斯安那州的野生种群收集物,对分生孢子梗形态进行了分类,确定了 3 种不同的表型:野生型、缠绕型和粗壮型。关于这些表型对以后粗糙脉孢菌生命周期中的孢子形成或萌发的影响,或者关于构成它们的遗传变异,知之甚少。在这项研究中,我们表明,分生孢子梗形态可能通过孢子形成距离和在不同碳源上的萌发来影响野生粗糙脉孢菌分离物的定植能力。我们生成并交叉同核菌株,这些菌株属于每个表型组,以更稳健地拟合和估计复杂性状分生孢子梗结构的遗传力模型。我们拟合的模型表明,至少有 3 个基因和 2 个上位性相互作用对分生孢子梗表型有贡献,该表型的遗传力估计为 0.47。为了揭示导致这些表型的基因,我们对代表 3 种表型的菌株的菌丝体和分生孢子梗进行了 RNA 测序。我们的结果表明,粗壮型菌株与野生型和缠绕型菌株的转录谱明显不同,在时钟控制基因 (ccg)、分生孢子特异性基因 con-6 和涉及代谢和通讯的基因中表现出不同的表达模式。综合来看,这些结果揭示了自然分生孢子梗形态变异的新生态影响和基础的差异基因表达,这是一个尚未被彻底探索的复杂性状。