Suppr超能文献

利用量子计算机进行化学动力学的变分量子模拟。

Variational Quantum Simulation of Chemical Dynamics with Quantum Computers.

作者信息

Lee Chee-Kong, Hsieh Chang-Yu, Zhang Shengyu, Shi Liang

机构信息

Tencent America, Palo Alto, California 94306, United States.

Tencent, Shenzhen, Guangdong 518057, China.

出版信息

J Chem Theory Comput. 2022 Apr 12;18(4):2105-2113. doi: 10.1021/acs.jctc.1c01176. Epub 2022 Mar 16.

Abstract

Classical simulations of real-space quantum dynamics are challenging due to the exponential scaling of computational cost with system dimensions. Quantum computers offer the potential to simulate quantum dynamics with polynomial complexity; however, existing quantum algorithms based on the split-operator techniques require large-scale fault-tolerant quantum computers that remain elusive in the near future. Here, we present variational simulations of real-space quantum dynamics suitable for implementation in noisy intermediate-scale quantum (NISQ) devices. The Hamiltonian is first encoded onto qubits using a discrete variable representation and binary encoding scheme. We show that direct application of a real-time variational quantum algorithm based on the McLachlan's principle is inefficient as the measurement cost grows exponentially with the qubit number for general potential energy, and an extremely small time-step size is required to achieve accurate results. Motivated by the insights that many chemical dynamics occur in the low-energy subspace, we propose a subspace expansion method by projecting the total Hamiltonian, including the time-dependent driving field, onto the system low-energy eigenstate subspace using quantum computers, and the exact quantum dynamics within the subspace can then be solved classically. We show that the measurement cost of the subspace approach grows polynomially with dimensionality for general potential energy. Our numerical examples demonstrate the capability of our approach, even under intense laser fields. Our work opens the possibility of simulating chemical dynamics with NISQ hardware.

摘要

由于计算成本随系统维度呈指数级增长,实空间量子动力学的经典模拟具有挑战性。量子计算机有潜力以多项式复杂度模拟量子动力学;然而,现有的基于分裂算符技术的量子算法需要大规模容错量子计算机,而这在近期仍难以实现。在此,我们展示了适用于在有噪声的中等规模量子(NISQ)设备中实现的实空间量子动力学变分模拟。首先使用离散变量表示和二进制编码方案将哈密顿量编码到量子比特上。我们表明,基于麦克拉克伦原理的实时变分量子算法的直接应用效率低下,因为对于一般势能,测量成本随量子比特数呈指数增长,并且需要极小的时间步长才能获得准确结果。鉴于许多化学动力学发生在低能子空间这一认识,我们提出一种子空间展开方法,即使用量子计算机将包括含时驱动场在内的总哈密顿量投影到系统低能本征态子空间上,然后可以经典地求解子空间内的精确量子动力学。我们表明,对于一般势能,子空间方法的测量成本随维度呈多项式增长。我们的数值示例展示了我们方法的能力,即使在强激光场下也是如此。我们的工作开启了用NISQ硬件模拟化学动力学的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验