Suppr超能文献

刺激响应性晶体智能材料:从合理设计与制备到应用

Stimuli-Responsive Crystalline Smart Materials: From Rational Design and Fabrication to Applications.

作者信息

Yan Dong, Wang Zhifang, Zhang Zhenjie

机构信息

State Key Laboratory of Medicinal Chemical Biology, College of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, and Renewable Energy Conversion and Storage Center, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China.

出版信息

Acc Chem Res. 2022 Apr 5;55(7):1047-1058. doi: 10.1021/acs.accounts.2c00027. Epub 2022 Mar 16.

Abstract

Stimuli-responsive smart materials that can undergo reversible chemical/physical changes under external stimuli such as mechanical stress, heat, light, gas, electricity, and pH, are currently attracting increasing attention in the fields of sensors, actuators, optoelectronic devices, information storage, medical applications, and so forth. The current smart materials mostly concentrate on polymers, carbon materials, crystalline liquids, and hydrogels, which have no or low structural order (i.e., the responsive groups/moieties are disorderly in the structures), inevitably introducing deficiencies such as a relatively low response speeds, energy transformation inefficiencies, and unclear structure-property relationships. Consequently, crystalline materials with well-defined and regular molecular arrays can offer a new opportunity to create novel smart materials with improved stimuli-responsive performance. Crystalline materials include framework materials (e.g., metal-organic frameworks, MOFs; covalent organic frameworks, COFs) and molecular crystals (e.g., organic molecules and molecular cages), which have obvious advantages as smart materials compared to amorphous materials. For example, responsive groups/moieties can be uniformly installed in the skeleton of the crystal materials to form ordered molecular arrays, making energy transfer between external-stimulus signals and responsive sites much faster and more efficiently. Besides that, the well-defined structures facilitate in situ characterization of their structural transformation at the molecular level by means of various techniques and high-tech equipment such as in situ spectra and single-crystal/powder X-ray diffraction, thus benefiting the investigation and understanding of the mechanism behind the stimuli-responsive behaviors and structure-property relationships. Nevertheless, some unsolved challenges remain for crystalline smart materials (CSMs), hampering the fabrication of smart material systems for practical applications. For instance, as the materials' crystallinity increases, their processability and mechanical properties usually decrease, unavoidably hindering their practical application. Moreover, crystalline smart materials mostly exist as micro/nanosized powders, which are difficult to make stimuli-responsive on the macroscale. Thus, developing strategies that can balance the materials' crystallinity and processability and establishing macroscale smart material systems are of great significance for practical applications.In this Account, we mainly summarize the recent research progress achieved by our groups, including (i) the rational design and fabrication of new stimuli-responsive crystalline smart materials, including molecular crystals and framework materials, and an in-depth investigation of their response mechanism and structure-property relationship and (ii) creating chemical/physical modification strategies to improve the processability and mechanical properties for crystalline materials and establishing macroscale smart systems for practical applications. Overall, this Account summarizes the state-of-the-art progress of stimuli-responsive crystalline smart materials and points out the existing challenges and future development directions in the field.

摘要

刺激响应型智能材料能够在机械应力、热、光、气体、电和pH等外部刺激下发生可逆的化学/物理变化,目前在传感器、致动器、光电器件、信息存储、医学应用等领域正受到越来越多的关注。当前的智能材料大多集中在聚合物、碳材料、液晶和水凝胶上,这些材料没有或只有低结构有序性(即响应基团/部分在结构中无序排列),不可避免地带来了诸如响应速度相对较低、能量转换效率低下以及结构-性能关系不明确等缺陷。因此,具有明确且规则分子阵列的晶体材料为创造具有改进刺激响应性能的新型智能材料提供了新的机会。晶体材料包括骨架材料(如金属有机骨架材料,MOFs;共价有机骨架材料,COFs)和分子晶体(如有机分子和分子笼),与无定形材料相比,它们作为智能材料具有明显优势。例如,响应基团/部分可以均匀地安装在晶体材料的骨架中,形成有序的分子阵列,使外部刺激信号与响应位点之间的能量传递更快、更高效。除此之外,明确的结构有助于通过各种技术和高科技设备,如原位光谱和单晶/粉末X射线衍射,在分子水平上对其结构转变进行原位表征,从而有利于研究和理解刺激响应行为背后的机制以及结构-性能关系。然而,晶体智能材料(CSMs)仍存在一些未解决的挑战,阻碍了用于实际应用的智能材料系统的制造。例如,随着材料结晶度的增加,其可加工性和机械性能通常会下降,不可避免地阻碍了它们的实际应用。此外,晶体智能材料大多以微米/纳米级粉末形式存在,难以在宏观尺度上实现刺激响应。因此,开发能够平衡材料结晶度和可加工性的策略以及建立宏观尺度的智能材料系统对于实际应用具有重要意义。在本综述中,我们主要总结了我们团队最近取得的研究进展,包括(i)新型刺激响应型晶体智能材料(包括分子晶体和骨架材料)的合理设计与制备,以及对其响应机制和结构-性能关系的深入研究,(ii)创建化学/物理改性策略以改善晶体材料的可加工性和机械性能,并建立用于实际应用的宏观尺度智能系统。总体而言,本综述总结了刺激响应型晶体智能材料的最新进展,并指出了该领域存在的挑战和未来的发展方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验