Suppr超能文献

PointGLR:三维点云的无监督结构表示学习

PointGLR: Unsupervised Structural Representation Learning of 3D Point Clouds.

作者信息

Rao Yongming, Lu Jiwen, Zhou Jie

出版信息

IEEE Trans Pattern Anal Mach Intell. 2023 Feb;45(2):2193-2207. doi: 10.1109/TPAMI.2022.3159794. Epub 2023 Jan 6.

Abstract

This work explores the use of global and local structures of 3D point clouds as a free and powerful supervision signal for representation learning. Local and global patterns of a 3D object are closely related. Although each part of an object is incomplete, the underlying attributes about the object are shared among all parts, which makes reasoning about the whole object from a single part possible. We hypothesize that a powerful representation of a 3D object should model the attributes that are shared between parts and the whole object, and distinguishable from other objects. Based on this hypothesis, we propose a new framework to learn point cloud representations by bidirectional reasoning between the local structures at different abstraction hierarchies and the global shape. Moreover, we extend the unsupervised structural representation learning method to more complex 3D scenes. By introducing structural proxies as the intermediate-level representations between local and global ones, we propose a hierarchical reasoning scheme among local parts, structural proxies, and the overall point cloud to learn powerful 3D representations in an unsupervised manner. Extensive experimental results demonstrate that the unsupervised representations can be very competitive alternatives of supervised representations in discriminative power, and exhibit better performance in generalization ability and robustness. Our method establishes the new state-of-the-art of unsupervised/few-shot 3D object classification and part segmentation. We also show our method can serve as a simple yet effective regime for model pre-training on 3D scene segmentation and detection tasks. We expect our observations to offer a new perspective on learning better representations from data structures instead of human annotations for point cloud understanding.

摘要

这项工作探索将三维点云的全局和局部结构用作表示学习的一种自由且强大的监督信号。三维物体的局部和全局模式密切相关。尽管物体的每个部分都是不完整的,但关于该物体的潜在属性在所有部分之间共享,这使得从单个部分推断整个物体成为可能。我们假设,一个强大的三维物体表示应该对部分与整个物体之间共享的、且能与其他物体区分开的属性进行建模。基于这一假设,我们提出了一个新框架,通过在不同抽象层次的局部结构和全局形状之间进行双向推理来学习点云表示。此外,我们将无监督结构表示学习方法扩展到更复杂的三维场景。通过引入结构代理作为局部和全局表示之间的中间层表示,我们提出了一种在局部部分、结构代理和整体点云之间的分层推理方案,以无监督方式学习强大的三维表示。大量实验结果表明,无监督表示在判别能力方面可以成为有监督表示的极具竞争力的替代方案,并且在泛化能力和鲁棒性方面表现出更好的性能。我们的方法确立了无监督/少样本三维物体分类和部分分割的新的最先进水平。我们还表明,我们的方法可以作为三维场景分割和检测任务模型预训练的一种简单而有效的机制。我们期望我们的观察结果能为从数据结构而非人工标注中学习更好的表示以理解点云提供一个新的视角。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验