Suppr超能文献

UMA-Net:一种用于三维点云分类的无监督表示学习网络。

UMA-Net: an unsupervised representation learning network for 3D point cloud classification.

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2022 Jun 1;39(6):1085-1094. doi: 10.1364/JOSAA.456153.

Abstract

The success of deep neural networks usually relies on massive amounts of manually labeled data, which is both expensive and difficult to obtain in many real-world datasets. In this paper, a novel unsupervised representation learning network, UMA-Net, is proposed for the downstream 3D object classification. First, the multi-scale shell-based encoder is proposed, which is able to extract the local features from different scales in a simple yet effective manner. Second, an improved angular loss is presented to get a good metric for measuring the similarity between local features and global representations. Subsequently, the self-reconstruction loss is introduced to ensure the global representations do not deviate from the input data. Additionally, the output point clouds are generated by the proposed cross-dim-based decoder. Finally, a linear classifier is trained using the global representations obtained from the pre-trained model. Furthermore, the performance of this model is evaluated on ModelNet40 and applied to the real-world 3D Terracotta Warriors fragments dataset. Experimental results demonstrate that our model achieves comparable performance and narrows the gap between unsupervised and supervised learning approaches in downstream object classification tasks. Moreover, it is the first attempt to apply the unsupervised representation learning for 3D Terracotta Warriors fragments. We hope this success can provide a new avenue for the virtual protection of cultural relics.

摘要

深度神经网络的成功通常依赖于大量的人工标记数据,而这些数据在许多实际数据集的获取既昂贵又困难。在本文中,提出了一种新颖的无监督表示学习网络 UMA-Net,用于下游的 3D 对象分类。首先,提出了基于多尺度壳的编码器,它能够以简单而有效的方式从不同尺度提取局部特征。其次,提出了改进的角度损失,以获得衡量局部特征和全局表示之间相似性的良好度量。随后,引入了自重建损失,以确保全局表示不会偏离输入数据。此外,通过所提出的基于交叉维度的解码器生成输出点云。最后,使用预训练模型获得的全局表示来训练线性分类器。此外,还在 ModelNet40 上评估了该模型的性能,并将其应用于真实的 3D 兵马俑碎片数据集。实验结果表明,我们的模型在下游对象分类任务中达到了可比的性能,缩小了无监督和监督学习方法之间的差距。此外,这是首次尝试将无监督表示学习应用于 3D 兵马俑碎片。我们希望这一成功能够为文物的虚拟保护提供新的途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验