Hu Shi-Min, Cai Jun-Xiong, Lai Yu-Kun
IEEE Trans Vis Comput Graph. 2020 Jul;26(7):2485-2498. doi: 10.1109/TVCG.2018.2889944. Epub 2018 Dec 27.
We present a novel algorithm for semantic segmentation and labeling of 3D point clouds of indoor scenes, where objects in point clouds can have significant variations and complex configurations. Effective segmentation methods decomposing point clouds into semantically meaningful pieces are highly desirable for object recognition, scene understanding, scene modeling, etc. However, existing segmentation methods based on low-level geometry tend to either under-segment or over-segment point clouds. Our method takes a fundamentally different approach, where semantic segmentation is achieved along with labeling. To cope with substantial shape variation for objects in the same category, we first segment point clouds into surface patches and use unsupervised clustering to group patches in the training set into clusters, providing an intermediate representation for effectively learning patch relationships. During testing, we propose a novel patch segmentation and classification framework with multiscale processing, where the local segmentation level is automatically determined by exploiting the learned cluster based contextual information. Our method thus produces robust patch segmentation and semantic labeling results, avoiding parameter sensitivity. We further learn object-cluster relationships from the training set, and produce semantically meaningful object level segmentation. Our method outperforms state-of-the-art methods on several representative point cloud datasets, including S3DIS, SceneNN, Cornell RGB-D and ETH.
我们提出了一种用于室内场景三维点云语义分割和标注的新算法,其中点云中的物体可能存在显著变化和复杂构型。对于物体识别、场景理解、场景建模等而言,将点云分解为具有语义意义片段的有效分割方法非常必要。然而,现有的基于低级几何的分割方法往往会对点云进行欠分割或过分割。我们的方法采用了一种根本不同的方法,即语义分割与标注同时实现。为了应对同一类物体的大量形状变化,我们首先将点云分割为表面面片,并使用无监督聚类将训练集中的面片分组为簇,从而提供一种用于有效学习面片关系的中间表示。在测试期间,我们提出了一种具有多尺度处理的新型面片分割和分类框架,其中通过利用基于学习到的簇的上下文信息自动确定局部分割级别。因此,我们的方法产生了稳健的面片分割和语义标注结果,避免了参数敏感性。我们进一步从训练集中学习物体-簇关系,并产生具有语义意义的物体级分割。在包括S3DIS、SceneNN、康奈尔RGB-D和ETH在内的几个代表性点云数据集上,我们的方法优于现有方法。